Paper | Title | Page |
---|---|---|
MO6PFP026 | Design Considerations for the TPS Pulsed Magnets System | 190 |
|
||
The highly stable pulsed magnets are designed for injection and extraction the electron beams operation in Taiwan Photon Source. The injection to the booster at 0.15 GeV is performed with septum and kicker devices as well as the extraction from the booster at 3 GeV. There are 5 in-vacuum septum and kicker magnets used for booster injection and extraction processes. For the storage ring, an injection of the electron beam into the storage ring is performed with a septum magnet and four identical kicker magnets. All pulsed magnets are designed for injection into the 3-GeV storage ring. The kicker magnet is excited with a 4.8-μs half-sine current waveform. A prototype of kicker magnet with 0.6 m of length is made and tested for examining the field errors. The field performances of the kicker magnet are presented. All pulsed magnets are fed with special current waveform. Both pulsed magnets are considered with the goal to achieve reliable work. |
||
TU6RFP040 | Design of the TPS Injection System | 1632 |
|
||
The Taiwan Photon Source (TPS) is a new 3 GeV synchrotron light source to be built at the National Synchrotron Radiation Research Center (NSRRC) in Taiwan. The design of TPS is aimed to provide a low-emittance and high-brilliance beam with operation in the top-up mode. In this paper we present the design of the TPS injection section and the transport line from booster to storage ring. The specifications and parameters of the septa, kickers, and ceramic chambers are also described. |
||
WE5RFP001 | Current Design Status of TPS 3 GeV Booster Synchrotron | 2258 |
|
||
The design work of the concentric booster for Taiwan Photon Source (TPS) has been well in progress. The circumference is 496.8 m. It consists of modified FODO cells with defocusing quadrupole and sextupole fields built in bending magnets, and combined function focusing quadrupoles with imbedded focusing sextupole. The emittance is about 10 nm-rad at 3 GeV. Several modifications on the structure were made to improve the beam dynamics behaviors. Good dynamic aperture and nonlinear behavior as well as good tunability are shown. The efficient closed orbit correction scheme is presented. The repetition rate is 3 Hz, and the eddy current effect is also discussed. |
||
WE5RFP002 | Design Status of Transfer Lines in TPS | 2261 |
|
||
The booster design of Taiwan Photon Source(TPS) has been significantly revised. Therefore, the transfer line from linac to booster(LTB) and the one from booster to storage ring(BTS) have been redesigned accordingly. The design of LTB transfer line has been simplified to reduce the number of magnets. The length of BTS transfer line has been greatly reduced. The design goal of transfer lines is to achieve high efficiency for beam injection. The status of current progress will be reported. |
||
WE5RFP006 | Progress Report of the TPS Lattice Design | 2273 |
|
||
A 3 GeV synchrotron light source is planned to be built at the existing site of NSRRC campus. The project is called the Taiwan Photon Source (TPS). It will provide x-ray photon beam with brilliance several orders higher than the one generated by the existing 1.5 GeV synchrotron. The design issues of accelerator lattice for the 3 GeV storage ring and booster injector will be presented. These issues cover the properties of linear and nonlinear beam dynamics, the optimization of dynamic aperture and momentum acceptance, collective beam instabilities and lifetime issues, the effects caused by various error sources and technical measures to suppress these error effects, etc. |