Paper | Title | Page |
---|---|---|
TU4RAC03 | Modeling and Design of High-Power Inductive Output Tubes | 767 |
|
||
Funding: Research funded by the Office of Naval Research and Naval Research Laboratory. The accelerator community is making the transition to IOT technology for a number of high-power UHF and L-band applications as a result their inherent benefits. Scientists, funded by the Office of Naval Research and Naval Research Laboratory, are investigating the physics of the beam-wave interaction of the IOT. The time-domain electrostatic PIC code MICHELLE, in conjunction with the Analyst® suite of electromagnetic codes, were used to model the cathode-grid-anode structure that comprise the input cavity. Our investigation has led to the discovery of a delay mechanism responsible for intra-bunch charge formation, as evidenced by IOT X-ray generation with energies significantly higher than the cathode accelerating potential, increasing with RF output power. Time-domain PIC results of this effect will be shown. We will also present simulation results of the large-signal beam wave interaction in the output cavity using the code TESLA. Examples of single beam and multiple-beam IOTs will also be shown. |
||
|