A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Chao, A.

Paper Title Page
TU6RFP054 Feasibility Study of Electron Beam Polarization Measurement Using Touschek Lifetime 1671
 
  • J. Zhang, J.Y. Li, C. Sun, W. Wu, Y.K. Wu
    FEL/Duke University, Durham, North Carolina
  • A. Chao
    SLAC, Menlo Park, California
 
 

Funding: *Work supported by US Air Force Office of Scientific Research medical FEL grant FA9550-04-01-0086 (YKWu).


Touschek scattering is the dominant loss mechanism for the electron beam in a low energy storage ring with a large bunch current. The Duke Free-Electron Laser (FEL) storage ring typically operates in the one-bunch or two-bunch mode with a very high bunch current and a varying electron beam energy as low as 250 MeV. The study of the Touschek lifetime is important for improving the performance of the Duke storage ring based light sources, including the storage ring FELs and a FEL driven Compton gamma source, the High Intensity Gamma-ray Source. This work reports our lifetime measurement results for few-bunch operation of the Duke storage ring. The Touschek loss rate is reduced when an electron beam is polarized in the storage ring. The change of the Touschek lifetime can be used as a method to monitor polarization of the electron beam. In this work, we will also report our preliminary results of the electron beam energy measurements using the resonant depolarization technique.

 
WE5RFP015 Concepts for the PEP-X Light Source 2297
 
  • R.O. Hettel, K.L.F. Bane, K.J. Bertsche, Y. Cai, A. Chao, V.A. Dolgashev, J.D. Fox, X. Huang, Z. Huang, T. Mastorides, C.-K. Ng, Y. Nosochkov, A. Novokhatski, T. Rabedeau, C.H. Rivetta, J.A. Safranek, J. Seeman, J. Stohr, G.V. Stupakov, S.G. Tantawi, L. Wang, M.-H. Wang, U. Wienands, L. Xiao
    SLAC, Menlo Park, California
  • I. Lindau
    Stanford University, Stanford, California
  • C. Pellegrini
    UCLA, Los Angeles, California
 
 

Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-76SF00515.


SSRL and SLAC groups are developing a long-range plan to transfer its evolving scientific programs from the SPEAR3 light source to a much higher performing photon source that would be housed in the 2.2-km PEP-II tunnel. While various concepts for the PEP-X light source are under consideration, including ultimate storage ring and ERL configurations, the present baseline design is a very low-emittance storage ring. A hybrid lattice has DBA or QBA cells in two of the six arcs that provide a total ~30 straight sections for ID beam lines extending into two new experimental halls. The remaining arcs contain TME cells. Using ~100 m of damping wigglers the horizontal emittance at 4.5 GeV would be ~0.1 nm-rad with >1 A stored beam. PEP-X will produce photon beams having brightnesses near 1022 at 10 keV. Studies indicate that a ~100-m undulator could have FEL gain and brightness enhancement at soft x-ray wavelengths with the stored beam. Crab cavities or other beam manipulation systems could be used to reduce bunch length or otherwise enhance photon emission properties. The present status of the PEP-X lattice and beam line designs are presented and other implementation options are discussed.

 
FR2PBI02 Gravitational Instability of a Nonrotating Galaxy 4275
 
  • A. Chao
    SLAC, Menlo Park, California
 
 

Funding: This work was supported by Department of Energy contract DE-AC02-76SF00515.


Gravitational instability of a star distribution in a galaxy is a well-known phenomenon in astrophysics. This problem can be analyzed using the standard tools developed in accelerator physics for analyzing the onset of beam instability and loss of Landau damping. An attempt is made here for a nonrotating galaxy. Predictions for the maximum stable galaxy size are in remarkable agreement with observations.

 

slides icon

Slides

 
FR5PFP022 Proton Storage Ring Optics Modeling with ac-Driven Betatron Motion 4356
 
  • Y.T. Yan, A. Chao
    SLAC, Menlo Park, California
  • M. Bai
    BNL, Upton, Long Island, New York
 
 

Funding: US DOE


Unlike an electron storage ring with radiation damping, resonance excitation is unsuitable to a proton storage ring for turn-by-turn betatron orbit data. However, one may consider modified betatron motion driven by ac dipoles oscillating at frequencies near the betatron tunes. With a matrix formulation for adding ac-dipole effects on 2-D coupled one-turn map, we concatenate the ac-dipole effects and the one-turn map to obtain a modified linear map. The ac-dipole effects are equivalent to inserted symplectic linear maps at the ac-dipole locations. If the maps are normalized through decoupling similarity transformation, the decoupled maps for the ac-dipole effects are equivalent to 1-D thin quads inserted at the corresponding locations, the same conclusion for the 1-D driven oscillation*. For optics modeling with MIA technique**, one must make sure that there are, simultaneously, two transverse ac-dipole driven betatron oscillations along with one longitudinal synchrotron oscillation. Once the optics model for the modified betatron motion is obtained, one can then obtain the proton storage ring model by de-concatenating the inserted ac-dipole linear maps.


* R. Miyamoto, S.E. Kopp, A. Jansson, and M.J. Syphers, PRSTAB 11, 084002 (2008).
** Y.T. Yan, ICFA Beam Dynamics Newsletter, No. 42, pp. 71-87 ( 2007), Y. Cai, W. Chou, Eds.