A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Chae, Y.-C.

Paper Title Page
TU5RFP079 ERL Staging 1272
 
  • K.C. Harkay, Y.-C. Chae
    ANL, Argonne
 
 

Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


ERL staging is a novel concept that provides a practical path to upgrading an existing synchrotron light source while minimizing disruption to the users and managing the technical risk. In the very first stage, the accelerator operating parameters are comparable to CEBAF without recirculation. Therefore, initially, energy recovery is not required and the injector is more modest. Consequently, the technical risk is significantly reduced relative to the full ERL. Using the APS as an example, the first stage is based on a full-energy, 7-GeV superconducting radiofrequency (srf) linac and an electron source that is almost off-the-shelf. The linac would initially deliver a low average current beam (<200 uA), but with a geometric emittance that is much smaller than the storage ring, the x-ray brightness can exceed the APS. Furthermore, the spatial coherence fraction would be about 100 times higher and the pulse length up to 100 times smaller than the APS. Valuable srf operating experience is attained at an early stage while allowing critical energy recovery issues to be studied. Energy recovery is commissioned in stage 2. The optics design and performance at each stage will be presented.