A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Celata, C.M.

Paper Title Page
WE1PBI03 Cyclotron Resonances in Electron Cloud Dynamics 1807
 
  • C.M. Celata, M.A. Furman, J.-L. Vay
    LBNL, Berkeley, California
  • D.P. Grote
    LLNL, Livermore, California
  • J.S.T. Ng, M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
 
 

Funding: This work was supported by the Office of Science, U. S. Department of Energy, under Contract No. DE-AC02-05CH11231.


A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb << 2*π/ωc, (lb = bunch duration, ωc = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor of approximately 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density "stripes" of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed.


C.M. Celata is presently also a visitor in Physics, Mathematics, and Astronomy at California Institute of Technology.

 

slides icon

Slides

 
TH5PFP047 Electron Cloud Modeling Considerations at CesrTA 3306
 
  • J.R. Calvey, J.A. Crittenden, G. Dugan, M.A. Palmer
    CLASSE, Ithaca, New York
  • C.M. Celata
    LBNL, Berkeley, California
 
 

Funding: Support provided by the US National Science Foundation and the US Department of Energy


The Cornell Electron Storage Ring (CESR) has recently begun operation as a test accelerator for next generation linear collider damping rings. This program, known as CesrTA, includes a thorough investigation of synchrotron radiation generated electron cloud effects. CESR is capable of operating with a variety of bunch patterns and beam currents, as well as with both electron and positron beams. Understanding the buildup of the cloud under these conditions requires the use of well validated simulation programs. This paper will discuss three such programs- POSINST, ECLOUD and CLOUDLAND, which have been benchmarked against each other in parameter regimes relevant to CesrTA operating conditions, with the aim of understanding systematic differences in the calculations.

 
FR1RAI02 The Conversion and Operation of the Cornell Electron Storage Ring as a Test Accelerator (CesrTA) for Damping Rings Research and Development 4200
 
  • M.A. Palmer, J.P. Alexander, M.G. Billing, J.R. Calvey, S.S. Chapman, G.W. Codner, C.J. Conolly, J.A. Crittenden, J. Dobbins, G. Dugan, E. Fontes, M.J. Forster, R.E. Gallagher, S.W. Gray, S. Greenwald, D.L. Hartill, W.H. Hopkins, J. Kandaswamy, D.L. Kreinick, Y. Li, X. Liu, J.A. Livezey, A. Lyndaker, V. Medjidzade, R.E. Meller, S.B. Peck, D.P. Peterson, M.C. Rendina, P. Revesz, D.H. Rice, N.T. Rider, D. L. Rubin, D. Sagan, J.J. Savino, R.D. Seeley, J.W. Sexton, J.P. Shanks, J.P. Sikora, K.W. Smolenski, C.R. Strohman, A.B. Temnykh, M. Tigner, S. Vishniakou, W.S. Whitney, T. Wilksen, H.A. Williams
    CLASSE, Ithaca, New York
  • J.M. Byrd, C.M. Celata, J.N. Corlett, S. De Santis, M.A. Furman, A. Jackson, R. Kraft, D.V. Munson, G. Penn, D.W. Plate, A.W. Rawlins, M. Venturini, M.S. Zisman
    LBNL, Berkeley, California
  • J.W. Flanagan, P. Jain, K. Kanazawa, K. Ohmi, H. Sakai, K. Shibata, Y. Suetsugu
    KEK, Ibaraki
  • K.C. Harkay
    ANL, Argonne
  • Y. He, M.C. Ross, C.-Y. Tan, R.M. Zwaska
    Fermilab, Batavia
  • R. Holtzapple
    CalPoly, San Luis Obispo, CA
  • J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • D. Kharakh, M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
  • E.N. Smith
    Cornell University, Ithaca, New York
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
 
 

Funding: Support provided by the US National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program.


In March of 2008, the Cornell Electron Storage Ring (CESR) concluded twenty eight years of colliding beam operations for the CLEO high energy physics experiment. We have reconfigured CESR as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. The primary goals of the CesrTA program are to achieve a beam emittance approaching that of the ILC Damping Rings with a positron beam, to investigate the interaction of the electron cloud with both low emittance positron and electron beams, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies (in particular a fast x-ray beam size monitor capable of single pass measurements of individual bunches). We report on progress with the CESR conversion activities, the status and schedule for the experimental program, and the first experimental results that have been obtained.

 

slides icon

Slides

 
FR5RFP043 Simulations of Electron-Cloud Current Density Measurements in Dipoles, Drifts and Wigglers at CesrTA 4628
 
  • J.R. Calvey, J.A. Crittenden, G. Dugan, S. Greenwald, D.L. Kreinick, J.A. Livezey, M.A. Palmer, D. L. Rubin
    CLASSE, Ithaca, New York
  • C.M. Celata, M.A. Furman, G. Penn, M. Venturini
    LBNL, Berkeley, California
  • K.C. Harkay
    ANL, Argonne
  • P. Jain, K. Kanazawa, Y. Suetsugu
    KEK, Ibaraki
  • M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
 
 

Funding: Supported by the US National Science Foundation, the US Department of Energy under Contracts No. DE-AC02-06CH11357, DE-AC02-05CH11231, and DE-AC02-76SF00515, and by the Japan/US Cooperation Program.


CESR at Cornell has been operating as a damping ring test accelerator (CesrTA) with beam parameters approaching those anticipated for the ILC damping rings. A core component of the research program is to fully understand electron cloud effects in CesrTA. As a local probe of the electron cloud, several segmented retarding field analyzers (RFAs) have been installed in CesrTA in dipole, drift and wiggler regions. Using these RFAs, the energy spectrum of the time-average electron cloud current density striking the walls has been measured for a variety of bunch train patterns; with bunch populations up to 2x1010 per bunch, beam energies from 2 to 5 GeV, horizontal geometric emittances from roughly 10 to 133 nm, and bunch lengths of about 1 cm; and for both positron and electron beams. The effect of mitigation measures, such as coatings, has also been studied. This paper will compare these measurements with the predictions of simulation programs, and discuss the implications of these comparisons for our understanding of the physics of electron cloud generation and mitigation in ILC-like damping rings.

 
FR5RFP078 Update on Electron-Cloud Simulations Using the Package WARP-POSINST 4719
 
  • J.-L. Vay, C.M. Celata, M.A. Furman, M. Venturini
    LBNL, Berkeley, California
  • D.P. Grote
    LLNL, Livermore, California
  • K.G. Sonnad
    FZK, Karlsruhe
 
 

Funding: Supported by the US-DOE under Contract DE-AC02-05CH11231, the US-LHC LARP, and the US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by the US-DOE under Contract DE-AC02-05CH11231.


At PAC05, we presented the package WARP-POSINST for the modeling of the effect of electron clouds on high-energy beams. We present here the latest developments in the package. Three new modes of operations were implemented: 1) “build-up mode” where, similarly to Posinst (LBNL) or Ecloud (CERN), the build-up of electron clouds is modeled in one region of an accelerator driven by a legislated bunch train; 2) “quasi-static mode” where, similarly to Headtail (CERN) or Quickpic (USC/UCLA), the “frozen beam” approximation is used to split the modeling of the beam and the electrons into two components evolving on their respective time scales; and 3) “Lorentz boosted mode” where the simulation is performed into a moving frame where the space and time scales related to the beam and electron dynamics fall in the same range. The implementation of modes (1) and (2) was primary motivated by the need for benchmarking with other codes, while the implementation of mode (3) fulfills the drive toward fully self-consistent simulations of e-cloud effect on the beam including the build-up phase. We also present benchmarking with other codes and selected results from its application to e-cloud effects.