A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Catalan-Lasheras, N.

Paper Title Page
MO6PFP046 First Field Test of FiDeL the Magnetic Field Description for the LHC 241
 
  • L. Bottura, M.C.L. Buzio, N. Catalan-Lasheras, L. Deniau, M. DiCastro, S.D. Fartoukh, M. Giovannozzi, P. Hagen, J.-P. Koutchouk, M. Lamont, J. Miles, RV. Remondino, N.J. Sammut, S. Sanfilippo, F. Schmidt, D. Sernelius, R.J. Steinhagen, M. Strzelczyk, E. Todesco, R. Tomás, W. Venturini Delsolaro, L. Walckiers, J. Wenninger, R. Wolf, P. Xydi
    CERN, Geneva
 
 

The start-up of the LHC has provided the first field test for the concept, functionality and accuracy of FiDeL, the Field Description for the LHC. FiDeL is primarily a parametric model of the transfer function of the main field integrals generated by the series of magnets in the LHC powering circuits, from main optical elements to high-order harmonic correctors, both superconducting and normal-conducting magnets. In addition, the same framework is used to predict harmonic errors of both static and dynamic nature, and forecast appropriate corrections. In this paper we give a description of the level of detail achieved in the model and the rationale adopted for the LHC start-up. Beam-based measurements have been used for an assessment of the first-shot accuracy in the prediction of the current setting for the main arc magnets*.


*The work reported has been performed by the authors and the FiDeL Team

 
MO6PFP049 Methods to Detect Faulty Splices in the Superconducting Magnet System of the LHC 247
 
  • J. Strait
    Fermilab, Batavia
  • R. Bailey, M. Bednarek, B. Bellesia, N. Catalan-Lasheras, K. Dahlerup-Petersen, R. Denz, C. Fernandez-Robles, R.H. Flora, E. Gornicki, M. Koratzinos, M. Pojer, L. Ponce, R.I. Saban, R. Schmidt, A.P. Siemko, M. Solfaroli Camillocci, H. Thiesen, A. Vergara-Fernández
    CERN, Geneva
  • Z. Charifoulline
    RAS/INR, Moscow
  • P. Jurkiewicz, P.J. Kapusta
    HNINP, Kraków
 
 

The incident of 19 September 2008 at the LHC was apparently caused by a faulty inter-magnet splice of about 200 nOhm resistance. Cryogenic and electrical techniques have been developed to detect other abnormal splices, either between or inside the magnets. The quench protection system is used in a special mode to measure the voltage across each magnet with an accuracy better than 0.1 mV, allowing internal splices with R > 10 nOhm to be detected. Since this system does not cover the bus between magnets, the cryogenic system is used in a special configuration* to measure the rate of temperature rise due to ohmic heating. Accuracy of a few mK/h, corresponding to a few Watts, has been achieved. This allows detection of excess resistance of more than a few tens of nOhms in a cryogenic sub-sector (2 optical cells). Follow-up measurements, using an ad-hoc system of high-accuracy voltmeters, are made in regions identified by the cryogenic system. These techniques have detected two abnormal internal magnet splices of 100 nOhms and 50 nOhms respectively. In 2009, this ad-hoc system will be replaced with a permanent one which will monitor all splices at the nOhm level.


*L. Tavian, Helium II Calorimetry for the Detection of Abnormal Resistive Zones in LHC Sectors, this conference.