A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Caspers, F.

Paper Title Page
MO4RAC02 Status of LHC Crab Cavity Simulations and Beam Studies 85
 
  • R. Calaga, R. De Maria
    BNL, Upton, Long Island, New York
  • R.W. Assmann, J. Barranco, F. Caspers, E. Ciapala, T.P.R. Linnecar, E. Métral, Y. Sun, R. Tomás, J. Tuckmantel, Th. Weiler, F. Zimmermann
    CERN, Geneva
  • G. Burt
    Lancaster University, Lancaster
  • Y. Funakoshi, A. Morita, Y. Morita, K. Nakanishi, Y. Ohnishi
    KEK, Ibaraki
  • Z. Li, A. Seryi, L. Xiao
    SLAC, Menlo Park, California
  • P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J. Qiang
    LBNL, Berkeley, California
  • N. Solyak, V.P. Yakovlev
    Fermilab, Batavia
 
 

Funding: This work was partially performed under the auspices of the US DOE and the European Community-Research Infrastructure, FP6 programme (CARE, contract number RII3-CT-2003-506395)}


The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. Some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects, beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here.

 

slides icon

Slides

 
TU5PFP011 A Novel Technique for Mitigating Multipactor by Means of Magnetic Surface Roughness 830
 
  • F. Caspers, E. Montesinos
    CERN, Geneva
  • S. Anza, J. Gil, C. Vicente
    aurorasat, Paterna
  • V.E. Boria
    DCOM-iTEAM-UPV, Valencia
  • W. Bruns
    WBFB, Berlin
  • L. Conde
    Universidad Politecnica de Madrid, ETSI Aeronauticos, Madrid
  • L. Galan
    UAM, Madrid
  • B. Gimeno
    UVEG, Burjasot (Valencia)
  • C. Miquel Espanya, D. Raboso
    ESA-ESTEC, NOORDWIJK
  • I. Montero
    CSIC, Madrid
 
 

Multipactor phenomena which are closely linked to the SEY (secondary electron yield) can be mitigated by many different methods including groves in the metal surface as well as using electric or magnetic bias fields. However frequently the application of global magnetic or electric bias field is not practicable considering the weight and power limitations on-board satellites. Additionally, surface grooves may degrade the RF performance. Here we present a novel technique which is based on a magnetostatic field pattern on the metallic surface with fast spatial modulation in the order of 30 micron. This field pattern is produced by proper magnetization of an underlying ferromagnetic layer such as nickel. Simulations and preliminary experimental results will be shown and a number of applications, both for particle accelerators and satellite microwave payloads are discussed.

 
TU6RFP023 Installation and Hardware Commissioning of the Multi-Turn Extraction at the CERN Proton Synchrotron 1581
 
  • S.S. Gilardoni, D. Allard, M.J. Barnes, O.E. Berrig, A. Beuret, D. Bodart, P. Bourquin, R. Brown, M. Caccioppoli, F. Caspers, J.-M. Cravero, C.G.A. Dehavay, T. Dobers, M. Dupont, G. Favre, T. Fowler, F. Franchi, M. Giovannozzi, J. Hansen, M. Karppinen, C. Lacroix, E. Mahner, V. Mertens, J. Monteiro, R. Noulibos, E. Page, R. Principe, C. Rossi, L. Sermeus, R.R. Steerenberg, G. Vandoni, G. Villiger, Th. Zickler, C. de Almeida Martins
    CERN, Geneva
 
 

The implementation of new Multi-turn extraction at the CERN Proton Synchrotron required major hardware changes for the nearly 50-year old accelerator. The installation of new PFNs and refurbished kicker magnets for the extraction, new sextupole and octupole magnets, new power converters, together with an in-depth review of the machine aperture leading to the design of new vacuum chambers was required. As a result, a heavy programme of interventions had to be scheduled during the winter shut-down 2007-8. The newly installed hardware and its commissioning is presented and discussed in details.

 
TU6RFP076 Measurement of Longitudinal and Transverse Impedance of Kicker Magnets Using the Coaxial Wire Method 1726
 
  • M.J. Barnes, F. Caspers, T. Kroyer, E. Métral, F. Roncarolo, B. Salvant
    CERN, Geneva
 
 

Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, even above the Curie temperature of ferrite. In addition the impedance can contribute to beam instabilities. In this paper different variants of the coaxial wire method, both for measuring longitudinal and transverse impedance, are briefly discussed in a tutorial manner and do's and don'ts are shown on practical examples. In addition we present the results of several impedance measurements for SPS kickers using the wire method and compare those results with theoretical models.

 
WE1PBI02 Interactions of Microwaves and Electron Clouds 1802
 
  • F. Caspers, F. Zimmermann
    CERN, Geneva
 
 

The modification of microwave signals passing through an electron cloud can be used as a diagnostic tool for detecting its presence and as a measure for its effective density. This observation method was demonstrated in pioneering measurements at the CERN SPS in 2003 with protons and at PEP-II in 2006 with positron beams in the particle accelerator field. Results and applications of this technique are discussed as well as limitations and possible difficulties. A strong enhancement of the electron related signals due to cyclotron resonance is theoretically predicted and has been observed in different machines. The application of this method can also be extended for space applications and plasma physics where microwave diagnostics is known and used since many years. The question whether suitably chosen microwaves might also be employed for electron-cloud suppression will be addressed. An electron cloud may also emit microwaves itself and the intensity of this emission depends on external parameters such as the electrical bias field and resonator frequencies related to trapped mode resonances in a beam-pipe.

 

slides icon

Slides

 
WE5PFP075 The New CERN PS Transverse Damper 2183
 
  • A. Blas, J.M. Belleman, E. Benedetto, F. Caspers, D.C. Glenat, R. Louwerse, M. Martini, E. Métral, V. Rossi, J.P.H. Sladen
    CERN, Geneva
 
 

Since 1999 the PS has been operated without active transverse damping thanks to an increase of the coupling between the transverse planes and the reduction of injection steering errors. Although the LHC requirements are met by these means, a new transverse feedback system has been commissioned to reinforce the robustness of operation and avoid the blow-up generated by residual injection steering errors. This system could also allow the reduction of the chromaticity and reduce the slow incoherent losses during the long PS injection plateau. It could also stabilize the high energy instabilities that appear occasionally with the LHC nominal beam and may be a limiting factor for ultimate LHC beam. Highlights include a signal processing with an automatic delay adapting itself to the varying revolution frequency, a programmable betatron phase adjustment along the cycle, pick-ups that have been re-furbished with electronics covering the very low frequency of the first betatron line and a compact wideband high-power solid state amplifier that drives the strip-line kicker via an impedance matching transformer. The overall system is described together with experimental results.

 
TH5PFP089 Trapped Mode Study for a Rotatable Collimator Design for the LHC Upgrade 3416
 
  • L. Xiao, C.-K. Ng, J.C. Smith
    SLAC, Menlo Park, California
  • F. Caspers
    CERN, Geneva
 
 

Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515 and used resources of NERSC supported by DOE Contract No. DE-AC02-05CH11231, and of NCCS supported by DOE Contract No. DE-AC05-00OR22725.


A rotatable collimator is proposed for the LHC phase II collimation upgrade. When the beam crosses the collimator, trapped modes will be excited that result in beam energy loss and collimator power dissipation. Some of the trapped modes can also generate transverse kick on the beam and affect the beam operation. In this paper the parallel eigensolver code Omega3P is used to search for all the trapped modes below 2GHz in the collimator, including longitudinal modes and transverse modes. The loss factors and kick factors of the trapped modes are calculated as function of the jaw positions. The amplitude ratio between transverse and longitudinal trapped mode intensity can be used as a direct measure of the position of the beam. We present simulation results and discuss the results.

 
TH5RFP033 Ringing in the Pulse Response of Long and Wideband Coaxial Transmission Lines due to Group Delay Dispersion 3519
 
  • G. Kotzian, F. Caspers, S. Federmann, W. Höfle
    CERN, Geneva
  • R. De Maria
    BNL, Upton, Long Island, New York
  • G. Kotzian
    Graz University of Technology (TUG), Signal Processing and Speech Communication Laboratory (SPSC), Graz
 
 

In particle accelerators coaxial cables are commonly used to transmit wideband beam signals covering many decades of frequencies over long distances. Those transmission lines often have a corrugated outer and/or inner conductor. This particular construction exhibits a significant amount of frequency dependent group delay variation. A comparison of simulations based on theoretical models and S11 and S21 network analyzer measurements up to 2.5 GHz is presented. It is shown how the non-linear phase response and varying group delay leads to ringing in the pulse response and subsequent distortion of signals transmitted through such coaxial transmission lines.

 
TH5RFP044 Observation of Electron Clouds in the ANKA Undulator by Means of the Microwave Transmission Method 3549
 
  • K.G. Sonnad, I. Birkel, S. Casalbuoni, E. Huttel, D. Saez de Jauregui, N.J. Smale
    FZK, Eggenstein
  • F. Caspers
    CERN, Geneva
  • A.-S. Müller, K.G. Sonnad
    KIT, Karlsruhe
  • R. Weigel
    Max-Planck Institute for Metal Research, Stuttgart
 
 

Funding: This work has partly been supported by the Initiative and Networking Fund of the Helmholtz Association under contract number VH-NG-320.


A superconducting undulator is installed in the ANKA electron storage ring. Electron clouds could potentially contribute to the heat load of this device. A microwave transmission type electron cloud diagnostic has been installed for the undulator section of the ANKA machine. We present the system layout with particular emphasis on the electron machine aspects. Hardware transfer function results and e-cloud data for different machine settings are discussed. Special care has been taken for front end filter design both on the microwave injection and pick-up side.

 
TH6PFP076 Status of Schottky Diagnostics in the ANKA Storage Ring 3880
 
  • K.G. Sonnad, I. Birkel, S. Casalbuoni, E. Huttel, N.J. Smale
    FZK, Eggenstein
  • F. Caspers
    CERN, Geneva
  • N. Hiller, A.-S. Müller, K.G. Sonnad
    KIT, Karlsruhe
  • R. Weigel
    Max-Planck Institute for Metal Research, Stuttgart
 
 

Funding: This work has partly been supported by the Initiative and Networking Fund of the Helmholtz Association under contract number VH-NG-320


The status of longitudinal and transverse Schottky observation systems for the synchrotron light source ANKA is presented. ANKA regularly operates in a dedicated low alpha mode with short bunches for the generation of coherent THz radiation. The Schottky measurement results are shown and compared with theoretical predictions for the regular as well as the different stages of the low alpha mode of operation. Special care had to be taken to control and mitigate the impact from strong coherent lines of the short bunches on the signal processing chain. The system setup is shown, expected and unexpected observations as well as applications are discussed.

 
FR2RAC02 Measurement and Analysis of SPS Kicker Magnet Heating and Outgassing with Different Bunch Spacing 4264
 
  • M.J. Barnes, F. Caspers, K. Cornelis, L. Ducimetière, E. Mahner, G. Papotti, G. Rumolo, V. Senaj, E.N. Shaposhnikova
    CERN, Geneva
 
 

Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, over several hours, even above the Curie temperature of the ferrite. At present the nominal bunch spacing in the SPS is 25 ns, however for an early stage of LHC operation it is preferable to have 50 ns bunch spacing. Machine Development (MD) studies have been carried out with an inter-bunch spacing of 25 ns, 50 ns or 75 ns. For some of the SPS kicker magnets the 75 ns bunch spacing resulted in considerable beam induced heating. In addition the MDs showed that 50 ns bunch spacing could result in a very rapid pressure rise in the kicker magnet and thus cause an interlock. This paper discusses the MD observations of the SPS kickers and analyses the available data to provide explanations for the phenomena: possible remedies are also discussed.

 

slides icon

Slides

 
FR5RFP049 Coupling Impedance of the CERN SPS Beam Position Monitors 4646
 
  • B. Salvant
    EPFL, Lausanne
  • D. Alesini, M. Migliorati, B. Spataro
    INFN/LNF, Frascati (Roma)
  • G. Arduini, C. Boccard, F. Caspers, A. Grudiev, O.R. Jones, E. Métral, G. Rumolo, B. Salvant, C. Zannini
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
  • F. Roncarolo
    UMAN, Manchester
 
 

A detailed knowledge of the beam coupling impedance of the CERN Super Proton Synchrotron (SPS) is required in order to operate this machine with a higher intensity for the foreseen Large Hadron Collider (LHC) luminosity upgrade. A large number of Beam Position Monitors (BPM) is currently installed in the SPS, and this is why their contribution to the SPS impedance has to be assessed. This paper focuses on electromagnetic simulations and bench measurements of the longitudinal and transverse impedance generated by the horizontal and vertical BPMs installed in the SPS machine.

 
FR5RFP051 Comparison of Enamel and Stainless Steel Electron Cloud Clearing Electrodes Tested in the CERN Proton Synchrotron 4652
 
  • E. Mahner, F. Caspers, T. Kroyer
    CERN, Geneva
  • C. Dr. Wendel
    Wendel GmbH, Dillenburg
 
 

During the 2007 run with the nominal LHC proton beam, electron cloud has been clearly identified and characterized in the PS using a dedicated setup with shielded button-type pickups. Efficient electron cloud suppression could be achieved with a stainless steel stripline-type electrode biased to negative and positive voltages up to ± 1 kV. For the 2008 run, a second setup was installed in straight section 84 of the PS where the stainless steel was replaced by a stripline composed of an enamel insulator with a resistive coating. In contrast to ordinary stripline electrodes this setup presents a very low beam coupling impedance and could thus be envisaged for long sections of high-intensity machines. Here, we present first comparative measurements with this new type of enamel clearing electrode using the nominal LHC beam with 72 bunches and 25 ns bunch spacing.

 
FR5RFP052 Impedance Studies for the Phase 2 LHC Collimators 4655
 
  • E. Métral, F. Caspers, A. Grudiev, T. Kroyer
    CERN, Geneva
  • F. Roncarolo
    UMAN, Manchester
  • B. Salvant
    EPFL, Lausanne
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
 
 

The LHC phase 2 collimation project aims at gaining a factor ten in cleaning efficiency, robustness and impedance reduction. From the impedance point of view, several ideas emerged during the last year, such as using dielectric collimators, slots or rods in copper plates, or Litz wires. The purpose of this paper is to discuss the possible choices, showing analytical estimates, electro-magnetic simulations performed using Maxwell, HFSS and GdFidL, and preliminary bench measurements. The corresponding complex tune shifts are computed for the different cases and compared on the stability diagram defined by the settings of the Landau octupoles available in the LHC at 7 TeV.

 
FR5RFP058 Stabilizing Effect of a Double-Harmonic RF System in the CERN PS 4670
 
  • C.M. Bhat
    Fermilab, Batavia
  • F. Caspers, H. Damerau, S. Hancock, E. Mahner, F. Zimmermann
    CERN, Geneva
 
 

Funding: Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and CARE-HHH


Motivated by the discussions on scenarios for LHC upgrades, beam studies on the stability of flat bunches in a double-harmonic RF system have been conducted in the CERN Proton Synchrotron (PS). Injecting nearly nominal LHC beam intensity per cycle, 18 bunches are accelerated on harmonic h=21 to 26 GeV with the 10 MHz RF system. On the flat-top, all bunches are then transformed to flat bunches by adiabatically adding RF voltage at h=42 from a 20 MHz cavity in anti-phase to the h=21 system. The voltage ratio V(h42)/V(h21) of about 0.5 was set according to simulations. For the next 140 ms, longitudinal profiles show stable bunches in the double harmonic RF bucket until extraction. Without the second harmonic component, coupled-bunch oscillations are observed. The flatness of the bunches along the batch is analyzed as a measure of the relative phase error between the RF systems due to beam loading. Measurements of electron cloud effects induced by the beam are also discussed. The results of beam dynamics simulations and their comparison with the measured data are presented.