A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Candel, A.E.

Paper Title Page
WE5PFP046 Dark Current Simulation for the CLIC T18 High Gradient Structure 2101
 
  • Z. Li, A.E. Candel, L. Ge, K. Ko, C.-K. Ng, G.L. Schussman
    SLAC, Menlo Park, California
  • S. Döbert, M. Gerbaux, A. Grudiev, W. Wuensch
    CERN, Geneva
  • T. Higo, S. Matsumoto, K. Yokoyama
    KEK, Ibaraki
 
 

Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515 and used resources of NERSC supported by DOE Contract No. DE-AC02-05CH11231, and of NCCS supported by DOE Contract No. DE-AC05-00OR22725.


Normal conducting accelerator structures such as the X-Band NLC structures and the CLIC structures have been found to suffer damage due to RF breakdown and/or dark current when processed to high gradients. Improved understanding of these issues is desirable for the development of structure designs and processing techniques that improve the structure high gradient performance. While vigorous experimental efforts have been put forward to explore the gradient parameter space via high power testing, comprehensive numerical multipacting and dark current simulations would complement measurements by providing an effective probe for observing interior quantities. In this paper, we present studies of multipacting, dark current, and the associated surface heating in high gradient accelerator structures using the parallel finite element simulation code Track3P. Comparisons with the high power test of the CLIC accelerator structures will be presented.

 
FR5PFP068 Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P 4467
 
  • A.E. Candel, A.C. Kabel, K. Ko, L. Lee, Z. Li, C.-K. Ng, G.L. Schussman
    SLAC, Menlo Park, California
  • I. Syratchev
    CERN, Geneva
 
 

Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515 and used resources of NERSC supported by DOE Contract No. DE-AC02-05CH11231, and of NCCS supported by DOE Contract No. DE-AC05-00OR22725.


In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS).

 
FR5PFP069 Parallel 3D Finite Element Particle-in-Cell Simulations with Pic3P 4470
 
  • A.E. Candel, A.C. Kabel, K. Ko, L. Lee, Z. Li, C.-K. Ng, G.L. Schussman
    SLAC, Menlo Park, California
  • I. Ben-Zvi, J. Kewisch
    BNL, Upton, Long Island, New York
 
 

Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515 and used resources of NERSC supported by DOE Contract No. DE-AC02-05CH11231, and of NCCS supported by DOE Contract No. DE-AC05-00OR22725.


SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic Particle-In-Cell code Pic3P. Designed for simulations of beam-cavity interactions dominated by space charge effects, Pic3P solves the complete set of Maxwell-Lorentz equations self-consistently and includes space-charge, retardation and boundary effects from first principles. Higher-order Finite Element methods with adaptive refinement on conformal unstructured meshes lead to highly efficient use of computational resources. Massively parallel processing with dynamic load balancing enables large-scale modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of next-generation accelerator facilities. Applications include the LCLS RF gun and the BNL polarized SRF gun.