Paper | Title | Page |
---|---|---|
TU1PBI02 | Simulating Electron-Ion Dynamics in Relativistic Electron Coolers | 635 |
|
||
Funding: Supported by the US DOE Office of Science, Office of Nuclear Physics under grants DE-FC02-07ER41499 and DE-FG02-08ER85182; used NERSC resources under grant DE-AC02-05CH11231. Novel electron-ion collider (EIC) concepts are a high priority for the long-term plans of the international nuclear physics community. Orders of magnitude higher luminosity will be required for the relativistic ion beams in such accelerators. Electron cooling is a promising approach to achieve the necessary luminosity. The coherent electron cooling (CEC) concept proposes to combine the best features of electron cooling and stochastic cooling, via free-electron laser technology, to cool high-energy hadron beams on orders-of-magnitude shorter time scales*. In a standard electron cooler, the key physical process is dynamical friction on the ions. The modulator section of a coherent cooler would be very similar to a standard cooler, but in this case dynamical friction becomes irrelevant and the key physics is the shape of the density wake imprinted on the electron distribution by each ion. We will present results using the massively parallel VORPAL framework for both particle-in-cell (PIC) and molecular dynamics (MD) simulations of electron-ion collisions in relativistic coolers and CEC modulators. * V.N. Litvinenko, I. Ben-Zvi, M. Blaskiewicz, Y. Hao, D. Kayran, E. Pozdeyev, G. Wang, G.I. Bell, D.L. Bruhwiler, A.V. Sobol et al., FEL Conf. Proc. (2008), in press. |
||
|
||
WE6RFP075 | Scaled Simulation Design of High Quality Laser Wakefield Accelerator Stages | 2970 |
|
||
Funding: Funded by the U.S. DOE Office of Science HEP including contract DE-AC02-05CH11231 and SciDAC, and by U.S. DOE NA-22, DARPA, and NSF Collider and light source applications of laser wakefield accelerators will likely require staging of controlled injection with multi-GeV accelerator modules to produce and maintain the required low emittance and energy spread. We present simulations of upcoming 10 GeV-class LWFA stages, towards eventual collider modules for both electrons and positrons*. Laser and structure propagation are controlled through a combination of laser channeling and self guiding. Electron beam evolution is controlled through laser pulse and plasma density shaping, and beam loading. This can result in efficient stages which preserve high quality beams. We also present results on controlled injection of electrons into the structure to produce the required low emittance bunches using plasma density gradient** and colliding laser pulses. Tools for accurately modeling emittance and energy spread will be discussed***. *E. Cormier-Michel et al., Proc. Adv Accel. Workshop 2008. |
||
WE6RFP091 | Parallel Fluid Simulations of Nonlinear Beam Loading in Laser Wakefield Accelerators | 3009 |
|
||
Funding: Supported by the US DOE Office of Science, Office of High Energy Physics under grant No. DE-FC02-07ER41499; used NERSC resources under grant DE-AC02-05CH11231. Laser wakefield accelerators (LWFA) have accelerated ~100 pC electron bunches to GeV energies over cm scale distances, via self-trapping from the plasma. Self-trapping cannot be tolerated in staged LWFA modules for high-energy physics applications. The ~1% energy spread of self-trapped electron bunches is too large for light source applications. Both difficulties could be resolved via external injection of a low-emittance electron bunch into a quasilinear LWFA, for which the dimensionless laser amplitude is less than two. However, significant beam charge will result in nonlinear beam loading effects, which will make it challenging to preserve the low emittance. The cold, relativistic fluid model of the parallel VORPAL framework* will be used to simulate the laser-driven electron wake, in the presence of an idealized electron beam. Profiles of the electron beam density, laser pulse envelope and plasma channel will be varied to find a nonlinear beam loading configuration that approximately flattens the electric fields across the beam. Hybrid fluid-PIC simulations will be used to measure the self-consistent emittance growth of the beam. * C. Nieter and J.R Cary, J. Comp. Phys. 196 (2004), p. 448. |
||
FR5PFP080 | Reduction of the Friction Force in Electron Cooling Systems due to Magnetic Field Errors | 4496 |
|
||
Funding: Supported by the US DOE Office of Nuclear Physics under grants DE-FC02-07ER41499 and DE-FG02-04ER84094; used NERSC resources under grant DE-AC02-05CH11231. Magnetic field errors can limit the dynamical friction force on co-propagating ions and, hence, increase the cooling time. We present theoretical and numerical results for reduction of the friction force due to bounded transverse magnetic field errors, as a function of wavelength. VORPAL * simulations using a binary collision algorithm ** show that small-wavelength field errors affect the friction logarithmically, via the Coulomb log, while long-wavelength errors reduce the friction by effectively increasing the transverse electron temperature. A complete understanding of finite-time effects and the role of small impact parameter collisions is required to correctly interpret the simulation results. We show that the distribution of electron-ion impact parameters is similar to a Pareto distribution, for which the central limit theorem does not apply. A new code has been developed to calculate the cumulative distribution function of electron-ion impact parameters and thus correctly estimate the expectation value and uncertainty of the friction force. * C. Nieter and J. Cary, J. Comp. Phys. 196 (2004), p. 448. |
||
FR5RFP018 | Laser Wakefield Simulation Using a Speed-of-Light Frame Envelope Model | 4569 |
|
||
Funding: Work supported by Department of Energy contracts DE-AC02-05CH11231 (LBNL), DE-FC02-07ER41499 (SciDAC), and DE-FG02-04ER84097 (SBIR). Simulation of laser wakefield accelerator (LWFA) experiments is computationally highly intensive due to the disparate length scales involved. Current experiments extend hundreds of laser wavelengths transversely and many thousands in the propagation direction, making explicit PIC simulations enormously expensive. We can substantially improve the performance of LWFA simulations by modeling the envelope modulation of the laser field rather than the field itself. This allows for much coarser grids, since we need only resolve the plasma wavelength and not the laser wavelength, and this also allows larger timesteps. Thus an envelope model can result in savings of several orders of magnitude in computational resources. By propagating the laser envelope in a Galilean frame moving at the speed of light, dispersive errors can be avoided and simulations over long distances become possible. Here we describe the model and its implementation. We show rigorous studies of convergence and discretization error, as well as benchmarks against explicit PIC. We also demonstrate efficient, fully 3D simulations of downramp injection and meter-scale acceleration stages. |