Paper | Title | Page |
---|---|---|
MO6PFP044 | Superconducting Magnets for a Final Focus Upgrade of ATF2 | 235 |
|
||
Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. The Accelerator Test Facility (ATF2) at KEK is a scaled down version of the final focus design proposed for the future linear colliders (LC) and aims to experimentally verify the final focus (FF) technology needed to obtain very small, stable beam spots at a LC interaction point. Initially the ATF2 FF is made using conventional (warm) quadrupole and sextupole magnets; however, we propose to upgrade the FF by replacing some of the conventional magnets with new superconducting magnets constructed with the same technology as those of the International Linear Collider baseline FF magnets*. With the superconducting magnet upgrade we can look to achieve smaller interaction point beta-functions and to study superconducting magnet vibration stability in an accelerator environment. Therefore for the ATF2 R&D magnet we endeavor to incorporate cryostat design features that facilitate monitoring of the cold mass movement via interferometric techniques. The design status of the ATF2 superconducting upgrade magnets is reported in this paper. *International Linear Collider Reference Design Report, ILC-REPORT-2007-001, August 2007. |
||
WE6PFP023 | Status of the CLIC Beam Delivery System | 2537 |
|
||
The CLIC BDS is experiencing the careful revision from a large number of world wide experts. This was particularly enhanced by the successful CLIC'08 workshop held at CERN. Numerous new ideas, improvements and critical points are arising, establishing the path towards the Conceptual Design Report by 2010. |
||
TH5RFP080 | Study of the Stabilization to the Nanometer Level of Mechanical Vibrations of the CLIC Main Beam Quadrupoles | 3633 |
|
||
To reach the design luminosity of CLIC, the movements of the quadrupoles should be limited to the nanometer level in order to limit the beam size and emittance growth. Below 1 Hz, the movements of the main beam quadrupoles will be corrected by a beam-based feedback. But above 1 Hz, the quadrupoles should be mechanically stabilized. A collaboration effort is ongoing between several institutes to study the feasibility of the “nano-stabilization” of the CLIC quadrupoles. The study described in this paper covers the characterization of independent measuring techniques including optical methods to detect nanometer sized displacements and analyze the vibrations. Actuators and feedback algorithms for sub-nanometer movements of magnets with a mass of more than 400 kg are being developed and tested. Input is given to the design of the quadrupole magnets, the supports and alignment system in order to limit the amplification of the vibration sources at resonant frequencies. A full scale mock-up integrating all these features is presently under design. Finally, a series of experiments in accelerator environments should demonstrate the feasibility of the nanometer stabilization. |
||
TH5RFP081 | Ground Vibration and Coherence Length Measurements for the CLIC Nano-Stabilization Studies | 3636 |
|
||
The demanding nanometer transverse beam sizes and emittances in future linear accelerators results in stringent alignment and nanometer vibration stability requirements. For more than two decades, ground vibration measurements were made by different teams for feasibility studies of linear accelerators. Recent measurements were performed in the LHC tunnel and at different CERN sites on the surface. The devices to measure nanometer sized vibrations, the analysis techniques and the results are critically discussed and compared with former measurement campaigns. The implications of the measured integrated R.M.S. displacements and coherence length for the CLIC stabilization system are mentioned. |
||
TH5RFP084 | Nanometer Order of Stabilization for Precision Beam Size Monitor (Shintake Monitor) | 3645 |
|
||
The ATF2, accelerator test facility has been developed confirming techniques for obtaining super low emittance beam for future particle accelerators. Here, the converged beam size is designed to be 37 nm, and a precision beam size monitor using interference fringes as a reference called Shintake monitor is used for measuring it. In order to measure the beam size with resolution of better than 10%, relative position between the beam and the interference fringes should be stabilized within few nanometers. Highly rigid tables and mounts for the Shintake monitor and final focusing magnets are adopted with highly rigid floor to ensure relative position stability. Then, the Shintake monitor can be stabilized against the beam, since the beam fluctuates coherently with the final focusing magnets. On the other hand the interference fringes are stabilized against the Shintake monitor with precise phase control system. As a result, relative position between the beam and the interference fringes is stabilized based on rigidity of tables, mounts, and floor between them. We will present our conception for stabilization and results of vibration measurements for the Shintake monitor. |
||
TH5RFP086 | Linear Collider Test Facility: ATF2 Final Focus Active Stabilisation Pertinence | 3651 |
|
||
Funding: Work supported by the Agence Nationale de la Recherche of the French Ministry of Research (Programme Blanc, Project ATF2-IN2P3-KEK, contract ANR-06-BLAN-0027). CLIC is one of the current projects of linear colliders. Achieving a vertical beam size of 1 nm at the Interaction Point (IP) with several nanometers of fast ground motion imposes an active stabilization of final doublet magnets (FD) at a tenth of nm above 4Hz. ATF2 is a test facility for linear colliders whose first aim is to have a vertical beam size of 37nm. Relative motion tolerance between FD and the IP is of 7nm above 0.1Hz. Because ground motion is coherent between these two elements, they were fixed to the floor so that they move in a coherent way. Investigations are going on to have in 2011 a useful active stabilization for ATF2 in order to use it as a CLIC prototype. Parameters of a 2D ground motion generator were fitted on measurements to reproduce spatial and temporal spectra, so it can be used for ATF2 simulations. Thus, we evaluated the ideal response function that an active stabilization FD system would need to have to improve on the present ATF2 system. Because ground motion coherence is lost with upstream magnets, we simulated the integrated vibrations at the IP to evaluate the usefulness of their stabilization. These results were validated with measurements. |
||
TH5RFP087 | Linear Collider Final Doublet Considerations: ATF2 Vibration Measurements | 3654 |
|
||
Funding: Work supported by the Agence Nationale de la Recherche of the French Ministry of Research (Programme Blanc, Project ATF2-IN2P3-KEK, contract ANR-06-BLAN-0027). Future linear collider projects like ILC and CLIC will have beam sizes of a few nm. Vibration sources like ground motion can hamper the beam collisions. Relative jitter tolerance between the final focus magnets and the Interaction point (IP) is a fraction of the beam size. The ATF2 project proposes a test facility with a projected beam of 37nm. To measure the beam size with only 2% of error, vertical relative jitter tolerance (above 0.1Hz) between the final doublet magnets (FD) and the IP (with a Shintake beam Size Monitor: BSM) is of the order of 7nm while ground motion is of about 150nm. Thanks to determined adequate instrumentations, investigations were done to design supports for FD. Since ground motion measurements showed that this one is coherent up to 4m, more than the distance between FD and BSM, we chose a stiff support for FD fixed to the ground on its entire surface. Thus, FD and BSM should move in a coherent way. Vibration measurements show that relative motion between FD and BSM is only of 4.8nm and that flowing water in FD does not add any significant jitter. The FD support has been consequently validated on site at ATF2 to be within the vibration specifications. |
||
FR5PFP004 | Orbit Reconstruction, Correction, Stabilization and Monitoring in the ATF2 Extraction Line | 4311 |
|
||
Funding: CNRS/IN2P3 ANR (Programme Blanc, Project ATF2-IN2P3-KEK, contract ANR-06-BLAN-0027) The orbit in the ATF2 extraction line has to be accurately controlled to allow orbit and optics corrections to work well downstream. The Final Focus section contains points with large beta function values which amplify incoming beam jitter, and few correctors since the steering is performed using quadrupole movers, and so good orbit stability is required. It is also essential because some magnets are non-linear and can introduce position-dependent coupling of the motion between the two transverse planes. First experience monitoring the orbit in the extraction line during the ATF2 commissioning is described, along with a simulation of the planned steering algorithm. |
||
FR1RAI03 | ATF2 Commissioning | 4205 |
|
||
ATF2 is a final-focus test beam line that attempts to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction is well advanced and beam commissioning of ATF2 has started in the second half of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation. |
||
|