Paper | Title | Page |
---|---|---|
TH5PFP036 | Conceptual Design of a 20 GeV Electron Accelerator for a 50 keV X-Ray Free-Electron Laser Using Emittance Exchange Optics and a Crystallographic Mask | 3275 |
|
||
At Los Alamos National Laboratory we are actively exploring the feasibility of constructing a 50-keV x-ray free-electron laser. For such a machine to be feasible, we need to limit the cost and size of the accelerator and, as this is intended as a user facility, we would prefer to use proven, conventional accelerator technology. Using recent developments in transverse-to-transverse and transverse-to-longitudinal emittance exchange optics *, **, we present a conceptual 20-GeV conventional electron accelerator design capable of producing an electron beam with a normalized transverse emittance as low as 0.2 mm-mrad, a root-mean-square (RMS) beam length of 74 fs, and an RMS energy spread of 0.01%. We also explore the possibility of introducing a crystallographic mask into the beam line. Combined with a transverse-to-longitudinal emittance exchange optic, we show that such a mask can be used to modulate the electron beam longitudinally to match the x-ray wavelength. This modulation, combined with the very low transverse beam emittance, allows us to not only generate 50-keV x-rays with a 20-GeV electron beam, but also drastically decrease the length of the required undulator. *P. Emma, Z. Huang, K. -J. Kim, and P. Piot, Phys. Rev. ST Accel. Beams 9, 100702 (2006). |