Paper | Title | Page |
---|---|---|
MO4PBC03 | Developments for Cornell's X-Ray ERL | 106 |
|
||
Cornell University is planning to build an Energy-Recovery Linac (ERL) X-ray facility. In this ERL design, a 5 GeV superconducting linear accelerator extends the CESR ring which is currently used for the Cornell High Energy Synchrotron Source (CHESS). Here we describe some of the recent developments for this ERL, including linear and nonlinear optics, tracking studies, vacuum system design, gas and intra beam scattering computations, and collimator and radiation shielding calculations based on this optics, undulator developments, optimization of X-ray beams by electron beam manipulation, technical design of ERL cavities and cryomodules, and preparation of the accelerator site. |
||
|
||
WE6PFP104 | CesrTA Low-Emittance Tuning – First Results | 2754 |
|
||
Funding: Support provided by the US National Science Foundation and the US Department of Energy. The Cornell Electron Storage Ring has been reconfigured as a test accelerator (CesrTA) for low emittance damping ring R&D for the International Linear Collider (ILC). We are developing low emittance tuning techniques with a goal of 1) achieving a vertical emittance approaching that of the ILC damping rings and 2) Gaining an understanding of the effectiveness of those techniques. We will use gain mapping to characterize beam position monitor (BPM) electrode gains, orbit response analysis to determine BPM button misalignments, betatron phase and coupling measurements to characterize optical errors, and orbit and dispersion measurements to locate sources of vertical dispersion. We are investigating a nondestructive dispersion measurement that depends on exciting a synchrotron oscillation and monitoring the phase and amplitude at each BPM. We have developed the analysis tools necessary to correct magnet and alignment errors. An x-ray beam size monitor is being deployed that will allow us to monitor vertical emittance in real time, allowing for empirical tuning of beam size. We will describe the measurement and correction techniques and show data demonstrating their efficacy. |
||
TH5RFP029 | Design and Implementation of CESRTA Superconducting Wiggler Beampipes with Thin Retarding Field Analyzers | 3507 |
|
||
Funding: Work supported by the National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program Wiggler magnets are one of the key components in the ILC Damping Ring. It is critical to the ILCDR GDE to understand electron cloud (EC) growth and patterns, and to develop EC suppression techniques in the wiggler beampipes. The CESR-c superconducting wigglers, closely matching the parameters of the ILCDR wigglers, serve as unique testing vehicles. As part of the CesrTA project, we replaced the copper beampipes of two SCWs with EC diagnostic beampipes, where one of the beampipes is uncoated and the second is coated with a thin TiN film. Each of the EC diagnostic beampipes is equipped with three retarding field analyzers (RFAs) at strategic longitudinal locations in the wiggler field. Each of the RFAs has 12-fold segmentation to measure the horizontal EC density distribution. To maintain sufficient vertical beam aperture and to fit within the SCW warm bore, a thin style of RFA (with a thickness of 2.5 mm) has been developed and deployed. These SCWs with RFA-equipped beampipe have been installed and successfully operated in the re-configured CesrTA vacuum system. This paper describes the design and the construction of the RFA-equipped SCW beampipes and operational experience. |
||
TH5RFP030 | Design, Implementation and First Results of Retarding Field Analyzers Developed for the CESRTA Program | 3510 |
|
||
Funding: Support provided by the US National Science Foundation and the US Department of Energy. A central component of the operation of the Cornell Electron Storage Ring as a Test Accelerator (CesrTA) for ILC Damping Rings R&D is the characterization of electron cloud growth in each of the principal vacuum chamber types in use in the storage ring. In order to facilitate measurements in chambers with tightly constrained external apertures, retarding field analyzers have been developed that can be deployed in regions with as little as 3mm of available aperture. We report on the design, fabrication, characterization and operation of devices that are presently deployed in CESR drift, dipole, and wiggler chambers. |
||
TH5RFP071 | The TE Wave Transmission Method for Electron Cloud Measurements at Cesr-TA | 3606 |
|
||
Funding: Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We report on the optimization of TE Wave measurements at the Cesr-TA ring at Cornell University. The CESR storage ring is currently used as a testbed for technologies to be used in the damping rings of the International Linear Collider. The TE Wave measurement method utilizes capacitive buttons (BPMs) in the ring to excite and detect a propagating electromagnetic wave corresponding to the beampipe's fundamental TE mode. The presence of low-energy electrons along the wave path changes its propagation characteristics, which can be detected by analyzing the received signal. By choosing the machine fill pattern (gaps and bunch trains length) it is possible to modulate the density of the electron cloud and derive information on its rise and fall times by observing the detected signal spectrum. The possibility of circulating both electron and positron beams in the ring enabled us to separate the contribution of primary photoelectrons, which are independent on the circulating particle nature, from the transverse resonant mechanism, which can increase the primary electron density many times over and which only takes place with a circulating positron beam. |
||
TH6PFP028 | Model Independent Analysis with Coupled Beam Motion | 3759 |
|
||
This paper describes the results of measurements compared with the analysis of errors for a method of determining accelerator Twiss and coupling parameters from the singular value decomposition of beam position monitor data, taken on a turn-by-turn basis for a storage ring in fully coupled transverse beam coordinates. Using the transversely coupled-coordinate formalism described by Billing et al*, the measurement technique expands on the work of Wang et al**, which describes the SVD of the same data under the assumptions of no transverse coupling of the beam parameters. This particular method of data analysis requires a set of BPM measurements, taken when the beam is resonantly excited in each of its two dipole, betatron normal-modes of oscillation *M. Billing, et al, to be published in Phys. Rev. S T Accel Beams |
||
FR1RAI02 | The Conversion and Operation of the Cornell Electron Storage Ring as a Test Accelerator (CesrTA) for Damping Rings Research and Development | 4200 |
|
||
Funding: Support provided by the US National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program. In March of 2008, the Cornell Electron Storage Ring (CESR) concluded twenty eight years of colliding beam operations for the CLEO high energy physics experiment. We have reconfigured CESR as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. The primary goals of the CesrTA program are to achieve a beam emittance approaching that of the ILC Damping Rings with a positron beam, to investigate the interaction of the electron cloud with both low emittance positron and electron beams, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies (in particular a fast x-ray beam size monitor capable of single pass measurements of individual bunches). We report on progress with the CESR conversion activities, the status and schedule for the experimental program, and the first experimental results that have been obtained. |
||
|
||
FR5RFP042 | Effect of Wake Fields in an Energy Recovery Linac | 4625 |
|
||
Wake fields arising from the discontinuities in the vacuum chamber produce energy spread. In an energy recovery linac (ERL), a spent beam is decelerated before it is dumped in order to use its energy for the acceleration of new beam. While the energy spread accumulated from wakes before deceleration does not increase during deceleration, it becomes more important relative to the beam's decreasing energy. Therefore, in an ERL, wakes can produce very significant energy spread in the beam as it is decelerated to the energy of the beam dump so that beam transport to the dump may become impractical. This effect can place a limit either on the maximum charge per bunch or on the wake field-budget for the ERL. As an example of these wake field effects, this paper discusses their impact for the present design of the Cornell ERL and estimates the effects for typical vacuum chamber components being considered. |