A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Berz, M.

Paper Title Page
TU6PFP080 Nonscaling FFAG Variants for HEP and Medical Applications 1478
 
  • C. Johnstone
    Fermilab, Batavia
  • M. Berz, K. Makino
    MSU, East Lansing, Michigan
  • S.R. Koscielniak
    TRIUMF, Vancouver
  • F.E. Mills
    PAC, Batavia, Illinois
  • P. Snopok
    UCR, Riverside, California
 
 

The quest for higher beam power and duty factor and precisely controlled beams at reasonable cost has generated world-wide interest in Fixed-field Alternating Gradient accelerators (FFAGs). A new concept in non-scaling FFAGs to stabilize the betatron tune is under development. The emphasis to date has been on electron and proton accelerators, yet many facilities utilize H- front ends. This concept naturally extends to H- FFAGs and under conditions of rapid acceleration, the FFAG functions essentially as a recirculating linac with a common-aperture arc. As such it may be suitable for replacement of aging H- linac sections. For a slow acceleration cycle, an H- FFAG machine can exploit H- techniques to control extraction and intensity, and represents an innovation in proton therapy accelerators. Prototype RF and magnet component design have been initiated. For ten-turn acceleration, the rf cavities in a 10-100 MeV FFAG cannot be re-phased on the revolution time scale, and local adjustment of the pathlength is the proposed approach. For slow acceleration, broad-band, low-frequency rf can be applied. The basic optics and components for such FFAGs are presented.

 
WE3PBC05 Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-Scaling FFAGs and Related Accelerators Including Modern User Interfaces 1907
 
  • C. Johnstone, V. Kashikhin
    Fermilab, Batavia
  • M. Berz, K. Makino
    MSU, East Lansing, Michigan
  • P. Snopok
    St. Petersburg State University, St. Petersburg
 
 

Innovations in computer techniques in combination with increased sophistication in modeling are required to accurately understand, design and predict high-energy, and, in particular, the new generation of frontier accelerators for HEP and other applications. A recently identified problem lies in the simulation and optimization of FFAGs and related devices, for which currently available tools provide only approximate and inefficient simulation. For this purpose new tools are being developed within the advanced accelerator code COSY INFINITY to address complex, specific electromagnetic fields, including high-order fringe fields, out of plane fields, edge effects, and general field profiles; tools linked to modern global optimization techniques that can further accommodate the ultra-large emittances of proposed beams to allow efficient probing of very high dimensional parameter space. This new set of tools based on modern techniques and simulation approaches will be furnished with modern GUI-based user interfaces.

 

slides icon

Slides