Paper | Title | Page |
---|---|---|
MO6PFP006 | Design of the NSLS II High Order Multipole Correctors* | 139 |
|
||
Funding: US DOE Office of Basic Energy Sciences Feasibility studies for two families of corrector magnets for NSLS-II are presented. The first family of magnets are generalizations of figure eight quadrupoles using rotationally symmetric breaks in the return yoke to fit in available space. Properties specific to figure eight magnet are identified. The second type of magnet is a combined sextupole/dipole trim. |
||
MO6PFP008 | The Design and Construction of NSLS-II Magnets | 145 |
|
||
Funding: US DOE Office of Basic Energy Sciences NSLS-II is a new state-of-the-art medium energy synchrotron light source designed to deliver world leading brightness and flux with top-off operation for constant output. Design and engineering of NSLS-II began in 2005 and the beginning of construction and operations are expected to start in 2009 and 2015, respectively. The energy of the machine is 3Gev and the circumference 792 m. The chosen lattice requires tight on magnetic field tolerances for the ring magnets. These magnets have been designed with 3D Opera software. The required multipole field quality and alignment preclude the use of multifunctional sextupoles, leading to discrete corrector magnets in the storage ring. The corrector magnets are multifunctional and will provide horizontal and vertical steering as well as skew quadrupole. This paper describes the dipoles, quadrupoles, sextupoles, and corrector magnets design and prototyping status of the NSLS-II. |
||
WE6PFP006 | Overview of Magnetic Nonlinear Beam Dynamics in RHIC | 2489 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. In the article we review the nonlinear beam dynamics from nonlinear magnetic fields in the Relativistic Heavy Ion Collider. The nonlinear magnetic fields include the magnetic field errors in the interaction regions, chromatic sextupoles, and sextupole component from arc dipoles. Their effects on the beam dynamics and long-term dynamic apertures are evaluated. The online measurement and correction methods for the IR nonlinear errors, nonlinear chromaticity, and horizontal third order resonance are reviewed. The overall strategy for the nonlinear effect correction in the RHIC is discussed. |