Paper | Title | Page |
---|---|---|
MO4RAC04 | First Polarized Proton Collisions at a Beam Energy of 250 GeV in RHIC | 91 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. After having provided collisions of polarized protons at a beam energy of 100 GeV since 2001, the Relativistic Heavy Ion Collider~(RHIC) at BNL reached its design energy of polarized proton collision at 250 GeV. With the help of the two full Siberian snakes in each ring as well as careful orbit correction and working point control, polarization was preserved during acceleration from injection to 250~GeV. During the course of the Physics data taking, the spin rotators on either side of the experiments of STAR and PHENIX were set up to provide collisions with longitudinal polarization at both experiments. Various techniques to increase luminosity like further beta star squeeze and RF system upgrades as well as gymnastics to shorten the bunch length at store were also explored during the run. This paper reports the performance of the run as well as the plan for future performance improvement in RHIC. |
||
|
||
WE6PFP006 | Overview of Magnetic Nonlinear Beam Dynamics in RHIC | 2489 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. In the article we review the nonlinear beam dynamics from nonlinear magnetic fields in the Relativistic Heavy Ion Collider. The nonlinear magnetic fields include the magnetic field errors in the interaction regions, chromatic sextupoles, and sextupole component from arc dipoles. Their effects on the beam dynamics and long-term dynamic apertures are evaluated. The online measurement and correction methods for the IR nonlinear errors, nonlinear chromaticity, and horizontal third order resonance are reviewed. The overall strategy for the nonlinear effect correction in the RHIC is discussed. |
||
WE6PFP007 | Dynamic Aperture Evaluation for the RHIC 2009 Polarized Proton Runs | 2492 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. In preparation for the RHIC polarized proton run 2009, simulations were carried out to evaluate the million turn dynamic apertures for different beta*s at the proposed beam energies of 100 GeV and 250 GeV. One goal of this study is to find out the best beta* for this run. We also evaluated the effects of the second order chromaticity correction. The second order chromaticties can be corrected with the MAD8 Harmon module or by correcting the horizontal and vertical half-integer resonance driving terms. |
||
WE6PFP055 | Observation and Simulation of Beam-Beam Induced Emittance Growth in RHIC | 2622 |
|
||
Funding: Work performed under the auspices of the US DOE. In the recent years the peak luminosity of the RHIC polarized proton run has been improved. However, as a consequence, the luminosity lifetime is reduced. The beam emittance growth during the beam storage is a main contributor to the luminosity lifetime reduction, and it seems to be caused mainly by the beam-beam effect during collision. It is, therefore, important to better understand the beam-beam collision effects in RHIC with the aid of particle tracking codes. A simulation study of the emittance growth is performed with RHIC machine parameters using the LIFETRAC code*. The initial results of this study were reported in an earlier paper**. In order to achieve a better understanding and to provide guidance for future RHIC operations, we present an in depth investigation of the emittance growth for a range of RHIC operation tunes, bunch lengths and initial emittance. The simulation results are also compared to the available data from experimental measurements. *D.Shatilov, et al.,"Lifetrac Code for the Weak-Strong Simulation of the Beam-Beam Effects in Tevatron",PAC05 proc. |
||
WE6PFP056 | Investigation of the Radiation Background in the Interaction Region of the Medium-Energy Electron Relativistic Heavy Ion Collider (MeRHIC) | 2625 |
|
||
Funding: Work performed under the auspices of the US DOE. A staged approach towards the development of a high energy RHIC-based electron-ion collider has been proposed in BNL*. In the first stage, a medium-energy electron-ion collider (MEeIC) would be constructed. It would utilize a high energy ion beam, accelerated in one of the two existing rings of the RHIC facility, colliding with a medium energy (4GeV) electron beam, generated by a proposed energy-recovery linac. As a part of the design and investigation of the interaction region, it is necessary to estimate the level of background radiation in the physics experiment detector. The primary radiation distribution can be readily calculated by employing electromagnetic theory. However, the secondary radiation is due to a diffuse scattering of soft X-ray off rough surfaces. In this paper, we first calculate the primary radiation spectrum and apply the kinematic Born approximation deduced from the scattering dynamics. Next, the diffuse scattering cross section is calculated as a function of the material and surface properties of the MEeIC vacuum system. Finally, the minimization of the radiation background level by the choices of the material and surface properties is discussed. *V. Ptitsyn et al., “MEeIC - staging approach to eRHIC”, these proceedings. |
||
WE6PFP059 | Interaction Region Design for a RHIC-Based Medium-Energy Electron-Ion Collider | 2634 |
|
||
As first step in a staged approach towards a RHIC-based electron-ion collider, installation of a 4 GeV energy-recovery linac in one of the RHIC interaction regions is currently under investigation. To minimize costs, the interaction region of this collider has to utilize the present RHIC magnets for focussing of the high-energy ion beam. Meanwhile, electron low-beta focussing needs to be added in the limited space available between the existing separator dipoles. We discuss the challenges we are facing and present the current design status of this e-A interaction region. |
||
WE6PFP062 | MeRHIC – Staging Approach to eRHIC | 2643 |
|
||
Funding: Work performed under US DOE contract DE-AC02-98CH1-886 Design of a medium energy electron-ion collider (MEeIC) is under development at Collider-Accelerator Department, BNL. The design envisions a construction of 4 GeV electron accelerator in a local area inside the RHIC tunnel. The electrons will be produced by a polarized electron source and accelerated in the energy recovery linac. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at 1032 cm-2 s-1 level will be achieved with 40 mA CW electron current with presently available parameters of the proton beam. Efficient cooling of proton beam at the collision energy may bring the luminosity to 1033 cm-2 s-1 level. The important feature of the MEeIC is that it would serve as first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of the MEeIC accelerator components will be used for eRHIC. |
||
TH5PFP079 | Statistical Analysis of Multipole Components in the Magnetic Field of the RHIC Arc Regions | 3386 |
|
||
Funding: Work performed under the auspices of the US DOE. The existence of multipolar components in the dipole and quadrupole magnets is one of the factors limiting the beam stability in the RHIC operations. Therefore, the statistical properties of the non-linear fields are crucial for understanding the beam behavior and for achieving the superior performance in RHIC. In an earlier work*, the field quality analysis of the RHIC interaction regions (IR) was presented. Furthermore, a procedure for developing non-linear IR models constructed from measured multipolar data of RHIC IR magnets was described. However, the field quality in the regions outside of the RHIC IR regions had not yet been addressed. In this paper, we present the statistical analysis of multipolar components in the magnetic fields of the RHIC arc regions. The emphasis is on the lower order components, especially the sextupole in the arc dipole and the 12-pole in the quadrupole magnets, since they are shown to have the strongest effects on the beam stability. Finally, the inclusion of the measured multipolar components data of RHIC arc regions and their statistical properties into tracking models is discussed. *J. Beebe-Wang and A. Jain, “Realistic Non-linear Model and Field Quality Analysis in RHIC Interaction Regions”, proc. of PAC 2007, page 4309-4311 (2007) |