Paper | Title | Page |
---|---|---|
MO4RAC02 | Status of LHC Crab Cavity Simulations and Beam Studies | 85 |
|
||
Funding: This work was partially performed under the auspices of the US DOE and the European Community-Research Infrastructure, FP6 programme (CARE, contract number RII3-CT-2003-506395)} The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. Some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects, beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here. |
||
|
||
WE6PFP020 | Study with One Global Crab Cavity at IR4 for LHC | 2528 |
|
||
Funding: This work was supported by the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395). Modern colliders bring into collision a large number of bunches per pulse or per turn to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. In this paper, we discuss the beam dynamics issues of a single global crab cavity (GCC) for both nominal LHC optics and one upgrade LHC optics. |
||
TH6PFP039 | Beam Loss Control for the Unstripped Ions from the PS2 Charge Exchange Injection | 3790 |
|
||
Control of beam losses is an important aspect of the H- injection system for the PS2, a proposed replacement of the CPS in the CERN injector complex. H- ions may pass the foil unstripped or be partially stripped to excited H0 states which may be stripped in the subsequent strong-field chicane magnet. Depending on the choice of the magnetic field, atoms in the ground and first excited states can be extracted and dumped. The conceptual design of the waste beam handling is presented, including local collimation and the dump line, both of which must take into account the divergence of the beam from stripping in fringe fields. Beam load estimates and activation related requirements of the local collimators and dump are briefly discussed. |
||
TH6PFP043 | Orbit, Optics and Chromaticity Correction for PS2 Negative Momentum Compaction Lattices | 3802 |
|
||
The effect of magnet misalignments in the beam orbit and linear optics functions are reviewed and correction schemes are applied to the negative momentum compaction lattices of PS2. Chromaticity correction schemes are also proposed and tested with respect to off-momentum optics properties. The impact of the correction schemes in the dynamic aperture of the different lattices is finally evaluated. |
||
TH6PFP044 | Linear Optics Design of Negative Momentum Compaction Lattices for PS2 | 3805 |
|
||
In view of the CERN Proton Synchrotron proposed replacement with a new ring (PS2), a detailed optics design as been undertaken following the evaluation of several lattice options. The basic arc module consists of cells providing negative momentum compaction. The straight section is formed with a combination of FODO and quadrupole triplet cells, to accommodate the injection and extraction systems, in particular the H- injection elements. The arc is matched to the straight section with a dispersion suppressor and matching module. Different lattices are compared with respect to their linear optics functions, tuning flexibility and geometrical acceptance properties. |
||
WE6RFP017 | Collimation Considerations for PS2 | 2817 |
|
||
A main concern in high intensity rings is the evaluation of uncontrolled losses and their minimization using collimation systems. A two-stage systemis foreseen for the PS2. The fundamental design strategy for the collimation design is presented, including machine apertures and collimator materials. The dependence of the collimator system efficiency on the primary scraper length and the impact parameter of the particle is evaluated for different collimator locations. Beam loss maps are finally produced displaying the detailed power load deposited around the ring. |