Paper | Title | Page |
---|---|---|
TU6PFP029 | Neutron Spallation Studies for an Accelerator Driven Subcritical Reactor | 1351 |
|
||
Nuclear power production can benefit from the development of more comprehensive alternatives for dealing with long-term radioactive waste. One such alternative is an accelerator-driven subcritical reactor (ADSR) which has been proposed for both energy production and for burning radioactive waste. Here we investigate the effects of the size of the ADSR spallation target on the total neutron yield integrated over the neutron energy and emission angle. The contribution to the total neutron yield from the (n, xn) neutron interactions is evaluated at proton beam energies between 0.4 and 2 GeV. Calculations have been carried out with the GEANT4 simulation code using the Liege intranuclear cascade model and the results are compared to the the LAHET/MCNP code package predictions. |
||
TU6PFP030 | 6D Acceleration Studies in Proton Fixed Field Alternating Gradient Accelerator Lattices | 1354 |
|
||
It has been proposed to use a proton Fixed Field Alternating Gradient (FFAG) accelerator to drive an Accelerator Driven Subcritical Reactor (ADSR) as they have the potential to provide high current beams to energies needed, 500 MeV to 1 GeV. This paper describes the results of 6D simulations of acceleration in possible lattice designs to explore longitudinal acceptance. This is needed to evaluate accelerator duty cycle and options for acceleration such as harmonic number jumping. |
||
TU6PFP050 | Exploring the Feasibility of a Stand Alone Muon Facility for MuSR Research | 1394 |
|
||
The current paper discusses possible designs for a high intensity stand alone muon source for muSR studies of condensed matter. In particular we shall focus upon the potential implementation of a new generation of high power but relatively compact and cost effective proton drivers based on non-scaling fixed field alternating gradient (ns-FFAG) accelerator technology. The technical issues which must be addressed are also considered. |
||
WE5PFP011 | PAMELA: Development of the RF System for a Non-Relativistic Non-Scaling FFAG | 2009 |
|
||
Funding: EP/E032869/1 AMELA (Particle Accelerator for MEdicaL Applications) is a newly developed fixed field accelerator, which has capability for rapid beam acceleration, which is interesting for practical applications such as charged particle therapy. PAMELA aims to design a particle therapy facility using Non-Scaling FFAG technology, with a target beam repetition rate of 1kHz, which is far beyond that of conventional synchrotron. To realize the repetition rate, the key component is rf acceleration system. The combination of a high field gradient and a high duty factor is a significant challenge. In this paper, options for the system and the status of their development are presented. |
||
WE6RFP012 | Simulation of the LHC Collimation System Using MERLIN | 2805 |
|
||
The LHC Collimators are designed to remove halo particles such that they do not impinge onto either detectors or other vulnerable regions of the storage ring. However, the very high 7 TeV energy means that their design is critical, as is the modelling of the absorption, scattering and wakefield effects upon the passing bunches. Existing simulations are being performed using Sixtrack and K2. We compare these simulations with results obtained using the MERLIN code, which includes a fuller description of the scattering and wakefield processes. |
||
TH4GAC03 | PAMELA Overview: Design Goals and Principles | 3142 |
|
||
Funding: EPSRC EP/E032869/1 The PAMELA (Particle Accelerator for MEdicaL Applications) project is to design an accelerator for proton and light ion therapy using non-scaling Fixed Field Alternating Gradient (FFAG) accelerators, as part of the CONFORM project, which is also constructing the EMMA electron model of a non-scaling FFAG at Daresbury. This paper presents an overview of the PAMELA design, and a discussion of the design goals and the principles used to arrive at a preliminary specification of the accelerator. |
||
|
||
TH5PFP084 | Computation of Resistive Wakefields for Collimators | 3401 |
|
||
A technique has been developed which enables the calculation of resistive particle wake effects. The technique can simply be calculated to any order, and is easy and quick to evaluate. No assumptions are made about the range of the interaction, but this is especially useful for short range effects. We show how the exact evaluation compares with various common approximations for some simple cases, and implement the technique in the Merlin and PLACET simulation programs. The extension from cylindrical to rectangular apertures is highlighted. |