Paper | Title | Page |
---|---|---|
TH6PFP010 | Precision Closed Orbit Correction in a Fast Ramping Stretcher Ring | 3714 |
|
||
Acceleration of polarized electrons in a fast ramping circular accelerator poses challenging demands on the control and stabilization/correction of the closed orbit and the vertical betatron tune, in particular on the fast energy ramp. In order to successfully compensate depolarizing resonances at a ramping speed of up to 7.5 GeV/sec (dB/dt = 2 T/sec), at ELSA the closed orbit is stabilized with high precision using a system of Beam Position Monitors and steerer magnets distributed along the ring. During acceleration, the beam positions are read out from the BPMs at a rate of 1 kHz and energy-dependent orbit corrections are applied accordingly by means of offline feed-forward techniques. The system is thus sensitive to dynamic effects and an orbit stabilization of 100 microns rms is achieved routinely. At the same time, the betatron tunes are stabilized to 0.01 by time-resolved tune measurement and appropriate manipulations of the machine optics. This presentation will cover the concepts and implementation of techniques for orbit stabilization required for the acceleration of a polarized electron beam in the fast ramping stretcher ring ELSA. |