A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bailey, R.

Paper Title Page
MO6PFP049 Methods to Detect Faulty Splices in the Superconducting Magnet System of the LHC 247
 
  • J. Strait
    Fermilab, Batavia
  • R. Bailey, M. Bednarek, B. Bellesia, N. Catalan-Lasheras, K. Dahlerup-Petersen, R. Denz, C. Fernandez-Robles, R.H. Flora, E. Gornicki, M. Koratzinos, M. Pojer, L. Ponce, R.I. Saban, R. Schmidt, A.P. Siemko, M. Solfaroli Camillocci, H. Thiesen, A. Vergara-Fernández
    CERN, Geneva
  • Z. Charifoulline
    RAS/INR, Moscow
  • P. Jurkiewicz, P.J. Kapusta
    HNINP, Kraków
 
 

The incident of 19 September 2008 at the LHC was apparently caused by a faulty inter-magnet splice of about 200 nOhm resistance. Cryogenic and electrical techniques have been developed to detect other abnormal splices, either between or inside the magnets. The quench protection system is used in a special mode to measure the voltage across each magnet with an accuracy better than 0.1 mV, allowing internal splices with R > 10 nOhm to be detected. Since this system does not cover the bus between magnets, the cryogenic system is used in a special configuration* to measure the rate of temperature rise due to ohmic heating. Accuracy of a few mK/h, corresponding to a few Watts, has been achieved. This allows detection of excess resistance of more than a few tens of nOhms in a cryogenic sub-sector (2 optical cells). Follow-up measurements, using an ad-hoc system of high-accuracy voltmeters, are made in regions identified by the cryogenic system. These techniques have detected two abnormal internal magnet splices of 100 nOhms and 50 nOhms respectively. In 2009, this ad-hoc system will be replaced with a permanent one which will monitor all splices at the nOhm level.


*L. Tavian, Helium II Calorimetry for the Detection of Abnormal Resistive Zones in LHC Sectors, this conference.

 
TU6PFP057 Operational Experience with First Circulating Beam in the LHC 1412
 
  • M. Lamont, R. Alemany-Fernandez, R. Bailey, P. Collier, B. Goddard, V. Kain, A. Macpherson, L. Ponce, S. Redaelli, W. Venturini Delsolaro, J. Wenninger
    CERN, Geneva
 
 

Following a series of injection tests, the first attempts to pass beam around both directions of the LHC were successful and led rapidly to circulating beam in the counter clockwise direction (beam 2) and many turns of beam 1. Unfortunately the beam commissioning was curtailed by the incident in sector 34. However, measurements performed during this first commissioning period should that the magnet model of the machine had delivered optics close to nominal, and also very good performance of beam instrumentation and supporting software. Details of the machine set-up and the commissioning procedures are detailed. The measurements performed and the key results from this period are described.

 
FR1GRC05 The LHC Injection Tests 4254
 
  • M. Lamont, R. Alemany-Fernandez, R. Bailey, P. Collier, B. Goddard, V. Kain, A. Macpherson, L. Ponce, S. Redaelli, W. Venturini Delsolaro, J. Wenninger
    CERN, Geneva
 
 

A series of LHC injection tests was performed in August and September 2008. The first saw beam injected into sector 23; the second into sectors 78 and 23; the third into sectors 78-67 and sectors 23-34-45. The fourth, into sectors 23-34-45, was performed the evening before the extended injection test on the 10th September which saw both beams brought around the full circumference of the LHC. The tests enabled the testing and debugging of a number of critical control and hardware systems; testing and validation of instrumentation with beam for the first time; deployment, and validation of a number of measurement procedures. Beam based measurements revealed a number of machine configuration issues that were rapidly resolved. The tests were undoubtedly an essential precursor to the successful start of LHC beam commissioning. This paper provides an outline of preparation for the tests, the machine configuration and summarizes the measurements made and individual system performance.

 

slides icon

Slides