A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Baggett, K.S.

Paper Title Page
MO6PFP036 The “SF” System of Sextupoles for the JLAB 10 KW Free Electron Laser Upgrade 220
 
  • G.H. Biallas, M.G. Augustine, K.S. Baggett, D. Douglas, R.R. Wines
    JLAB, Newport News, Virginia
 
 

Funding: Work supported by the US DOE Contract #DE-AC05-060R23177 and the Commonwealth of Virginia.


The characteristics of the system of “SF” Sextupoles for the infrared Free Electron Laser Upgrade at the Thomas Jefferson National Accelerator Facility (JLab) are described. These eleven sextupoles possess a large field integral (2.15 T/m) with ± 0.01% field quality over a 150 mm width within a very short effective length (150 mm pole length) and have field clamps for fast field roll-off. The field integrals reproduce extremely well with good absolute resolution (± 0.1%). The simple, two-dimensional shape pole tips (directly from the original 3-D RADIA magnetic model) of these “all ends” magnets include the correction for end fields. Magnetic measurements are compared to the model. The system’s hysteresis protocol and power supplies were also used for the measurement process to enhance reproducibility in service, a recent initiative at JLab. The intricacies of magnetic measurement using the JLab field probe based Stepper Stand are described. The challenges of developing the in-house design power supplies for these magnets, based on use of a low quality supply brought to 0.001% current regulation by a CAN-Bus control are described.

 
MO6PFP037 Fabrication and Measurement of 12 GeV Prototype Quadrupoles at Thomas Jefferson National Accelerator Facility 223
 
  • T. Hiatt, K.S. Baggett, J.M. Beck, J.G. Dail, L. Harwood, J. Meyers, M. Wiseman
    JLAB, Newport News, Virginia
 
 

Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) currently has maximum beam energy of 6 GeV. The 12 GeV Upgrade Project will double the existing energy and is currently scheduled for completion in 2014. This doubling of energy requires modifications to the beam transport system which includes the addition of several new magnet designs and modifications to many existing designs. Prototyping efforts have been concluded for two different designs of quadrupole magnets required for the upgrade. The design, fabrication and measurement will be discussed.


Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.