A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Avrakhov, P.V.

Paper Title Page
TU5PFP062 Excitation of a Traveling Wave in a Superconducting Structure with Feedback 969
 
  • V.P. Yakovlev, A. Lunin, N. Solyak
    Fermilab, Batavia
  • P.V. Avrakhov, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
 
 

The accelerating gradient required for the ILC project exceeds 30 MeV/m. With current technology the maximum acceleration gradient in SC structures is determined mainly by the value of the surface RF magnetic field. In order to increase the gradient, the RF magnetic field is distributed homogeneously over the cavity surface (low-loss structure), and coupling to the beam is improved by introducing aperture "noses" (re-entrant structure). These features allow gradients in excess of 50 MeV/m to be obtained for a singe-cell cavity. Further improvement of the coupling to the beam may be achieved by using a TW SC structure with small phase advance per cell. We have demonstrated that an additional gradient increase by up to 46% may be possible if a pi/2 TW SC structure is employed. However, a TW SC structure requires a SC feedback waveguide to return the few GW of circulating RF power from the structure output back to the structure input. Advantages and limitations of different techniques of exciting the traveling wave in this structure are considered, including an analysis of mechanical tolerances. We also report on investigations of transient processes in the SC TW structure.