Paper | Title | Page |
---|---|---|
TU5RFP022 | A Proposed New Light Source Facility for the UK | 1141 |
|
||
The New Light Source (NLS) project was launched in April 2008 by the UK Science and Technology Facilities Council (STFC) to consider the scientific case and develop a conceptual design for a possible next generation light source based on a combination of advanced conventional laser and free-electron laser sources. Following a series of workshops and a period of scientific consultation, the science case was approved in October 2008 and the go-ahead given to continue the project to the design stage. In November the decision was taken that the facility will be based on cw superconducting technology in order to provide the best match to the scientific objectives. In this paper we present the source requirements, both for baseline operation and with possible upgrades, and the current status of the design of the accelerator driver and free-electron laser sources to meet those requirements. |
||
TU5RFP062 | A 1 keV FEL Driven by a Superconducting Linac as a Candidate for the UK New Light Source | 1226 |
|
||
Several new light source projects aim at the production of X-ray photons with high repetition rate (1kHz or above). We present here the results of the start-to-end simulations of a 2.2 GeV superconducting LINAC based on L-band SC Tesla-type RF cavities and the corresponding optimisation of the FEL dynamics at 1 keV photon energy. |
||
WE5RFP047 | A Recirculating Linac as a Candidate for the UK New Light Source Project | 2376 |
|
||
A design for a free electron laser driver which utilises 1.3 GHz superconducting CW accelerating structures is studied. The machine will deliver longitudinally compressed electron bunches with repetition rates of 1 kHz with a possibility to increase up to 1 MHz. Tracking is performed from an NC RF photocathode gun, accelerating and compressing in three stages to obtain peak current greater than 1 kA at 2.2 GeV. This is achieved through injection at 200 MeV, then recirculating twice in a 1 GeV main linac. The optics design, optimisation procedures and start to end modelling of this system are presented. |
||
WE6PFP023 | Status of the CLIC Beam Delivery System | 2537 |
|
||
The CLIC BDS is experiencing the careful revision from a large number of world wide experts. This was particularly enhanced by the successful CLIC'08 workshop held at CERN. Numerous new ideas, improvements and critical points are arising, establishing the path towards the Conceptual Design Report by 2010. |
||
WE6PFP024 | ATF2 Ultra-Low IP Betas Proposal | 2540 |
|
||
The CLIC Final Focus System has considerably larger chromaticity than those of ILC and its scaled test machine ATF2. We propose to reduce the IP betas of ATF2 to reach a CLIC-like chromaticity. This would also allow to study the FFS tuning difficulty as function of the IP beam spot size. Both the ILC and CLIC projects will largely benefit from the ATF2 experience at these ultra-low IP betas. |
||
WE6PFP071 | ATF2 Spot Size Tuning Using the Rotation Matrix Method | 2662 |
|
||
The Accelerator Test Facility (ATF2) at KEK aims to experimentally verify the local chromaticity correction scheme to achieve a vertical beam size of 37nm. The facility is a scaled down version of the final focus design proposed for the future linear colliders. In order to achieve this goal, high precision tuning methods are being developed. One of the methods proposed for ATF2 is a novel method known as the ‘rotation matrix’ method. Details of the development and testing of this method, including orthogonality optimisation and simulation methods, are presented. |
||
WE6RFP037 | Initial Studies and a Review of Options for a Collimator System for the Linac4 Accelerator | 2872 |
|
||
Linac4 is a 160 MeV H- linac which will replace the existing Linac2, a 50 MeV proton linac, at CERN as a first step of the upgraded LHC proton injector chain. No collimation system is foreseen in the baseline design but it will become mandatory for opreation at highest duty cycle in order to reduce activation of the machine. Such a system will also help to reduce activation at low duty cycle. A review of different collimation options, initial studies on collimator designs capable of intercepting beam power of 10, 25 and 50 Watts at energies between 50 and 160 MeV, the activation of such designs and the downstream elements are shown in this paper. |
||
TH6PFP074 | Solenoid and Synchrotron Radiation Effects in CLIC | 3874 |
|
||
The emission of Synchrotron Radiation in the CLIC BDS is one of the major limitations of the machine performance. An extensive revision of this phenomenon is presented with special emphasis on the IP solenoid. |
||
FR1RAI03 | ATF2 Commissioning | 4205 |
|
||
ATF2 is a final-focus test beam line that attempts to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction is well advanced and beam commissioning of ATF2 has started in the second half of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation. |
||
|