A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Anerella, M.

Paper Title Page
MO6PFP044 Superconducting Magnets for a Final Focus Upgrade of ATF2 235
 
  • B. Parker, M. Anerella, J. Escallier, P. He, A.K. Jain, A. Marone
    BNL, Upton, Long Island, New York
  • B. Bolzon, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P.A. Coe, D. Urner
    OXFORDphysics, Oxford, Oxon
  • C. Hauviller
    CERN, Geneva
  • A. Seryi
    SLAC, Menlo Park, California
  • T. Tauchi, K. Tsuchiya, J. Urakawa
    KEK, Ibaraki
 
 

Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.


The Accelerator Test Facility (ATF2) at KEK is a scaled down version of the final focus design proposed for the future linear colliders (LC) and aims to experimentally verify the final focus (FF) technology needed to obtain very small, stable beam spots at a LC interaction point. Initially the ATF2 FF is made using conventional (warm) quadrupole and sextupole magnets; however, we propose to upgrade the FF by replacing some of the conventional magnets with new superconducting magnets constructed with the same technology as those of the International Linear Collider baseline FF magnets*. With the superconducting magnet upgrade we can look to achieve smaller interaction point beta-functions and to study superconducting magnet vibration stability in an accelerator environment. Therefore for the ATF2 R&D magnet we endeavor to incorporate cryostat design features that facilitate monitoring of the cold mass movement via interferometric techniques. The design status of the ATF2 superconducting upgrade magnets is reported in this paper.


*International Linear Collider Reference Design Report, ILC-REPORT-2007-001, August 2007.

 
MO6PFP066 Design and Construction of a 15 T, 120 mm Bore IR Quadrupole Magnet for LARP 280
 
  • S. Caspi, D.W. Cheng, D.R. Dietderich, H. Felice, P. Ferracin, R.R. Hafalia, R. Hannaford, G.L. Sabbi
    LBNL, Berkeley, California
  • G. Ambrosio, R. Bossert, V. Kashikhin, D. Pasholk, A.V. Zlobin
    Fermilab, Batavia
  • M. Anerella, A.K. Ghosh, J. Schmalzle, P. Wanderer
    BNL, Upton, Long Island, New York
 
 

Funding: This work was supported in part by the Director, Office of Science, High Energy Physics, U.S. Department of Energy under contract No. DE-AC02-05CH11231


Pushing accelerator magnets beyond 10 T holds a promise of future upgrades to machines like the Large Hadron Collider (LHC) at CERN. Nb3Sn conductor is at the present time the only practical superconductor capable of generating fields beyond 10 T. In support of the LHC Phase-II upgrade, the US LHC Accelerator Research Program (LARP) is developing a large bore (120mm) IR quadrupole (HQ) capable of reaching 15 T at its conductor peak field. The 1 m long two-layer coil, based on the design of the LARP TQ quadrupole series that achieved 230 T/m in a 90 mm bore, will demonstrate additional features such as alignment and accelerator field quality while exploring the magnet performance limits in terms of gradient, forces and stresses. In this paper we summarize the design and report on the magnet construction progress.