Paper | Title | Page |
---|---|---|
TU4RAC04 | Proton Beam Acceleration with MA Loaded RF Systems in J-PARC RCS and MR Synchrotron | 770 |
|
||
J-PARC is a unique accelerator, because magnetic alloy (MA) loaded cavities are employed for the first time in the rf systems of high intensity proton synchrotrons. High field gradients of more than 20 kV/m are achieved covering the frequency range from 0.9 MHz to 3.4 MHz. The peak voltage of 45 kV per cavity is obtained by driving with two 600 kW tetrodes in push-pull. The first high intensity beam acceleration was successfully initiated at J-PARC RCS. Although RCS beam commissioning started with 10 rf systems, instead of 11 as designed, RCS succeeded in the acceleration of an intense proton beam, which is equivalent to 300 kW when operated at 25 Hz. The longitudinal painting based on the simulation with superimposed second harmonics and with phase and momentum manipulations was the key of success. In December 2008, the J-PARC MR beam is scheduled for its first acceleration up to 30 GeV, and the Material and Life Science facilities start the user operations. During the development stage of the MA cavities, some serious problems such as electrical breakdown on core surfaces occurred. The problems were solved in a short term, and all rf systems were completed on schedule. |
||
|
||
WE5PFP087 | Automatic Frequency Matching for Cavity Warming-up in J-PARC Linac Digital LLRF Control | 2213 |
|
||
In the J-PARC Linac LLRF, for the cavity warming-up, the cavity resonance is automatically tuned to be the accelerating frequency (324MHz and 972MHz) with a mechanical tuner installed on the cavity. Now we are planning to introduce a new method of the cavity-input frequency matching into the digital LLRF control system instead of the cavity resonance tuning for the cavity worming-up. For the frequency matching with the detuned cavity, the RF frequency is modulated by way of phase rotation with the I/Q modulator, while the source oscillator frequency is still fixed. The phase rotation is automatically controlled by the FPGA. The detuned frequency of the cavity is obtained from phase gradient of the cavity field decay at the RF-pulse end. No hardware modification is necessary for this frequency modulation method. The cost reduction or the high durability for the mechanical tuner is expected in the future. The results of the frequency modulation test will be reported in this presentation. |