A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Alforque, R.

Paper Title Page
TU3GRI03 NSLS-II Beam Diagnostics Overview 746
 
  • O. Singh, R. Alforque, B. Bacha, A. Blednykh, P. Cameron, W.X. Cheng, L.R. Dalesio, A.J. Della Penna, L. Doom, R.P. Fliller, G. Ganetis, R. Heese, H.-C. Hseuh, E.D. Johnson, B.N. Kosciuk, S.L. Kramer, S. Krinsky, J. Mead, S. Ozaki, D. Padrazo, I. Pinayev, V. Ravindranath, J. Rose, T.V. Shaftan, S. Sharma, J. Skaritka, T. Tanabe, Y. Tian, F.J. Willeke, L.-H. Yu
    BNL, Upton, Long Island, New York
 
 

A new 3rd generation light source (NSLS-II project) is in the early stage of construction at Brookhaven National Laboratory. The NSLS-II facility will provide ultra high brightness and flux with exceptional beam stability. It presents several challenges in the diagnostics and instrumentation, related to the extremely small emittance. In this paper, we present an overview of all planned instrumentation systems, results from research & development activities; and then focus on other challenging aspects.

 

slides icon

Slides

 
TU5RFP006 Beam Transport and Diagnostics for the NSLS-II Injection System 1096
 
  • R.P. Fliller, R. Alforque, R. Heese, R. Meier, J. Rose, T.V. Shaftan, O. Singh, N. Tsoupas
    BNL, Upton, Long Island, New York
 
 

The NSLS II is a state of the art 3 GeV synchrotron light source being developed at BNL. The injection system will consist of a 200 MeV linac and a 3GeVbooster synchrotron. The transport lines between the linac and booster (LtB) and the booster and storage ring (BtS) must satify a number of requirements. In addition to transporting the beam while mantaining the beam emittance, these lines must allow for commissioning, provide appropriate diagnostics, allow for the appropriate safety devices and and in the case of the BtS line, provide for a stable beam for top off injection. Appropriate diagnostics are also necessary in the linac and booster to complement the measurements in the transfer lines. In this paper we discuss the design of the transfer lines for the NSLSII along with the incorporated diagnostics and safety systems. Necessary diagnostics in the linac and booster are also discussed.

 
TH5RFP012 Development of High Stability Supports for NSLS-II RF BPMs 3465
 
  • B.N. Kosciuk, R. Alforque, B. Bacha, P. Cameron, F. Lincoln, I. Pinayev, V. Ravindranath, S. Sharma, O. Singh
    BNL, Upton, Long Island, New York
 
 

The NSLS-II Light Source being built at Brookhaven National Laboratory is expected to provide submicron stability of the electron orbit in the storage ring in order to utilize fully the very small emittances and electron beam sizes. This requires high stability supports for BPM pick-up electrodes, located near insertion device source. Description of the efforts for development of supports including carbon tubes and invar rods is presented.