Paper | Title | Page |
---|---|---|
WE5PFP094 | Phase Amplitude Detection (PAD) and Phase Amplitude Control (PAC) for PXFEL | 2231 |
|
||
In PAL, We are preparing the 3GeV Linac by upgrading the present 2.5GeV Linac and new 10GeV PxFEL project. The specification of the beam energy spread and rf phase is tighter than PLS Linac. In present PLS 2.5 GeV Linac, the specifications of the beam energy spread and rf phase are 0.6%(peak) and 3.5 degrees(peak) respectively. And the output power of klystron is 80 MW at the pulse width of 4 microseconds and the repetition rate of 10 Hz. In PxFEL, the specifications of the beam energy spread and rf phase are 0.1%(rms) and 0.1 degrees(rms) respectively. We developed the modulator DeQing system for 3GeV linac and PxFEL. And the phase amplitude detection system(PAD) and phase amplitude control(PAC) system is needed to improve the rf stability. This paper describes the microwave system for the PxFEL and the PAD and PAC system. |
||
WE5RFP038 | Improving Beam Stability in the LCLS Linac | 2349 |
|
||
Funding: Work supported by Department of Energy contract DE-AC03-76SF00515. The beam stability for the Linac Coherent Light Source (LCLS) at SLAC is important for good X-Ray operation. Although most of the jitter tolerances are met, there is always room for improvement. Besides the short term pulse-to-pulse jitter, we will also discuss oscillation sources of longer time cycles from seconds (feedbacks), to minutes (cooling systems), and up to the 24 hours caused by the day-night temperature variations. |
||
WE5RFP039 | Characterisation and Reduction of Transverse RF Kicks in the LCLS Linac | 2352 |
|
||
Funding: Work supported by Department of Energy contract DE-AC03-76SF00515. The electron beam for the Linac Coherent Light Source (LCLS) at SLAC is accelerated by disk-loaded RF structures over a length of 1 km. The mainly longitudinal field can sometimes exhibit transverse components, which kick the beam in x and/or y. This is normally a stable situation, but when a klystron, which powers some of these structures, has to be switched off and another one switched on, different kicks can lead to quite a different orbit. Some klystrons, configured in an energy and bunch length feedback, caused orbit changes of up to 1 mm, which is about 20 times the σ beam size. The origins and measurements of these kicks and some efforts (orbit bumps) to reduce them will be discussed. |
||
WE5RFP046 | Peak Current, Energy, and Trajectory Regulation and Feedback for the LCLS Electron Bunch | 2373 |
|
||
Funding: Work supported by Department of Energy contract DE-AC02-76SF00515. This work was performed in support of the LCLS project at SLAC The Linac Coherent Light Source is an x-ray Free-Electron Laser (FEL) project being commissioned at SLAC. The very bright electron beam required for the FEL is subjected to various sources of jitter along the accelerator. The peak current, centroid energy, and trajectory of the electron bunch are controlled precisely at the highest repetition rate possible with feedback systems. We report commissioning experience for these systems. In particular, there is high frequency content in the electron bunch current spectrum, and we report its impact on the systems. Due to the coupling of the betatron motion and the dispersion component of the electron trajectory, a fast in-line model* is incorporated. For the longitudinal feedback, we report the performance of two different configurations: one with RF system as direct actuators, which are nonlinear, and the other with artificially formed linear energy and energy-chirp actuators. Since the electron bunch is compressed to a final peak current of 2 to 3 kA, coherent synchrotron radiation and other wakefields are included for precise control of the electron bunch parameters. Machine performance is compared to start-to-end simulations. *P. Chu et al., these PAC09 proceedings |