A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Agapov, I.V.

Paper Title Page
TU6RFP024 Initial Results from Beam Commissioning of the LHC Beam Dump System 1584
 
  • B. Goddard, I.V. Agapov, E. Carlier, L. Ducimetière, E. Gallet, M. Gyr, L.K. Jensen, O.R. Jones, V. Kain, T. Kramer, M. Lamont, M. Meddahi, V. Mertens, T. Risselada, J.A. Uythoven, J. Wenninger, W.J.M. Weterings
    CERN, Geneva
 
 

Initial commissioning of the LHC beam dump system with beam took place in August and September 2008. The preparation, setting-up and the tests performed are described together with results of the extractions of beam into the dump lines. Analysis of the first detailed aperture measurements of extraction channels and kicker performance derived from dilution sweep shapes are presented. The performance of the other equipment subsystems is summarised, in particular that of the dedicated dump system beam instrumentation.

 
TU6RFP026 Beam Commissioning of Injection into the LHC 1590
 
  • V. Mertens, I.V. Agapov, B. Goddard, M. Gyr, V. Kain, T. Kramer, M. Lamont, M. Meddahi, J.A. Uythoven, J. Wenninger
    CERN, Geneva
 
 

The LHC injection tests and first turn beam commissioning took place in late summer 2008, after detailed and thorough preparation. The beam commissioning of the downstream sections of the SPS-to-LHC transfer lines and the LHC injection systems is described. The details of the aperture measurements in the injection regions are presented together with the performance of the injection related equipment. The measured injection stability is compared to the expectations. The operational issues encountered are discussed.

 
WE6PFP019 First Beam-Based Aperture Measurements in the Arcs of the CERN Large Hadron Collider 2525
 
  • S. Redaelli, I.V. Agapov, B. Dehning, M. Giovannozzi, F. Roncarolo, R. Tomás
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
 
 

Various LHC injection tests were performed in August and early September 2008 in preparation for the circulating beam operation. These tests provided the first opportunity to measure with beam the available mechanical aperture in two LHC sectors (2-3 and 7-8). The aperture was probed by exciting free oscillations and local orbit bumps of the injected beam trajectories. Intensities of a few 109 protons were used to remain safely below the quench limit of superconducting magnets in case of beam losses. In this paper the methods used to measure the mechanical aperture, the available on-line tools, and beam measurements for both sectors are presented. Detailed comparisons with the expected results from the as-built aperture models are also presented. It is shown that the measurements results are in good agreement with the LHC design aperture.

 
TH6PFP040 Machine Studies During Beam Commissioning of the SPS-to-LHC Transfer Lines 3793
 
  • M. Meddahi, I.V. Agapov, K. Fuchsberger, B. Goddard, W. Herr, V. Kain, V. Mertens, D.P. Missiaen, T. Risselada, J.A. Uythoven, J. Wenninger
    CERN, Geneva
  • E. Gianfelice-Wendt
    Fermilab, Batavia
 
 

Funding: Work partly supported by Fermilab, operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy


Through May to September 2008, further beam commissioning of the SPS to LHC transfer lines was performed. For the first time, optics and dispersion measurements were also taken in the last part of the lines, and into the LHC. Extensive trajectory and optics studies were conducted, in parallel with hardware checks. In particular dispersion measurements and their comparison with the beam line model were analysed in detail and led to propose the addition of a “dispersion-free” steering algorithm in the existing trajectory correction program.