TUPLB10 (Poster: TUPB080)

Non-destructive Real-time Monitor to measure 3D-Bunch Charge Distribution with Arrival Timing to maximize 3D-overlapping for HHG-seeded EUV-FEL

Hiromitsu TOMIZAWA XFEL Division /SPring-8

On behalf of all the staffs contributed to HHG-seeded EUV-FEL (SCSS) at SPring-8

3D bunch shape monitor (BCD: Bunch Charge Distribution)

Three sets of 3D-BCD elements: de/en-coding to de/o- multiplexing

Non-destructive, Shot-by-shot Real-time Monitor to measure 3D-Bunch Charge Distribution

The purpose of development 3D-Bunch measurements

Bunch duration measurements based on EO Sampling

- Nondestructive, single-shot, real-time measurements are reliable for : (XFEL) online beam adjustment during operation with SASE lasing.
 (Seeded FEL) feedback on 3D-overlap between e-bunch and HHG-pulse.
 (Our HHG-drive laser pulse and EO-probe pulse are the common pulse.)
- Sub-picosecond temporal resolution ~ Up to now, the highest resolution of 130 fs (FWHM) is reported from DESY [1].

Developments of probe laser, EO crystal and optics for high temporal resolution to obtain 30-fs temporal resolution

3D bunch shape monitor (3D bunch charge distribution monitor: 3D-BCDM) Single-shot measurements for both longitudinal and transverse distribution.

[1] G. Berden et al., Phys. Rev. Lett. 99 (2007) 164801

[2] H. Tomizawa, et al., in Proc. of FEL 07, Novosibirsk, Russia (2007) 472

[3] H. Tomizawa, Japan Patent Application No. 2007-133046

Sub-picosecond bunch duration measurements I

i) Streak Camera [1-3]

The best temporal resolution is 300 fs (FWHM)

when we use "> 700 nm light for injection" + "Fastest sweep field"

Cherenkov radiation enters photocathode.

 λ ~< 500nm: resolution of Streak Camera is ~ >500fs (FWHM)

Photoelectrons are swept by E-field to obtain the temporal distribution.

Space charge effect and initial velocity distribution of photoelectrons limits resolution.

ii) RF deflector

High precise with high resolution, but destructive.

It was installed to XFEL @1.4GeV [4] (The total length became large ~15 m).

Electron bunches enters RF cavity.

Electrons are swept by RF field to obtain the temporal distribution

[1] H. Tomizawa, Proc. of 5th PASJ, 2008, 129, [2] M. Uesaka, Femtosecond beam science, Inperial College Press (2005)
[3] M. Uesaka et al., IEEE Trans. Plasma Sci. 28 (2000) 1084
[4] H. Ego et al., in Proceedings of EPAC 08, Genova, Italy (2008) 1098

Sub-picosecond bunch duration measurements II

iii) E-field measurements based on EO detection

Non-destructive single-shot measurements are possible [1] Temporal resolution of 130 fs (FWHM) is reported using temporal decoding [2]

Refractive index inside EO crystal changes when Coulomb field is applied.

Laser probe pulse synchronized with electron bunch is injected into EO crystal

The polarization-state modulation of laser probe pulse is detected.

Several techniques for EO detection

- a) Temporal decoding: temporal distribution of laser pulse is measured
- b) Spectral decoding: spectral distribution of linear-chirped laser pulse is measured.

In this bunch shape monitor, we adopt spectral decoding.

[1] I. Wilke et al., Phys. Rev. Lett., 88 (2002) 124801, [2] G. Berden et al., Phys. Rev. Lett., 99 (2007) 164801

Measurement (Decoding) methods of EO Sampling :

- (a) Temporal Decoding
 - (b) Spectral Decoding

(c) Spatial Decoding

Measurements of linear-chirped laser probe pulse with Spectrograph Streak camera:

The upper is an original laser probe pulse (constant chirp rate). The lower is squarely shaped spectral intensity distribution by DAZZLER AO-modulator.

Transverse detection:

2D moment of bunch slice as transverse detection

A) Boundary condition of metal vacuum chamber (like Multi-pickup BPM)

Timing shifter to apply temporal delays for each EO-sector (without limits of Rep. rate)
 Square spectrum to guarantee real-time measurements

[2] H. Tomizawa, H. Hanaki, and T. Ishikawa,

Eight EO-crystals are probed by single hollow laser beam, simultaneously

[2] H. Tomizawa, H. Hanaki, and T. Ishikawa,

Linear-chirp (Constant Chirp Rate) used for Spectral decoding.

[2] H. Tomizawa, H. Hanaki, and T. Ishikawa,

Radial Polarization of linear chirped hollow laser pulse with broad bandwidth:

[2] H. Tomizawa, H. Hanaki, and T. Ishikawa,

Key technologies to be developed for femtosecond 3D-BCDM

Supercontinuum generation: Photonic crystal fiber

Supercontinuum propagation: Spectrum modulation by DAZZLER + Developments of optics Radial polarization: Liquid crystal

Hollow shape: Axicon mirror (lens) pair

Developments of DAST EO-detector towards to Res. 30fs!!

b

 Mission for real-time monitoring bunch-by-bunch seeding pulse at Soft-XFEL

a-b plane

Estimation: temporal response of DAST EO ~30 fs [FWHM]!!

ZnTe and GaP has phonon absorption at 6 THz and 11 THz, respectively. \Rightarrow THz pulse shape is distorted by the dispersion at THz region.

For 30-fs resolution, EO crystal is required which is transparent for 0 -30THz.

DAST: n1=2.4, n2=1.68, n3=1.62, r11=77pm/V, r21=42pm/V, r13=15pm/V @800nm

In 2011, we measured electron bunches via EO-Sampling with DAST at VUV-FEL (SCSS). It was the first EOS-measurements in the world (*We observed a spectral broadening. It indicates that DAST is higher response than ZnTe < 50fs [FWHM]*).

Timing feedback with EO

Seeding result with Timing feedback

All of you are welcome at our poster TUPB080 !! 3D bunch shape monitor (BCD: Bunch Charge Distribution)

Three sets of 3D-BCD elements: de/en-coding to de/o- multiplexing

