FR1A —  Invited Oral Presentations   (14-Sep-12   08:30—10:30)
Chair: R.E. Laxdal, TRIUMF, Vancouver, Canada
Paper Title Page
FR1A01 Heavy Ion Strippers 1050
 
  • F. Marti
    FRIB, East Lansing, Michigan, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
Stripping of high current heavy ion beams is a key technology for future accelerator as FAIR (Germany) and FRIB (USA) and current ones as RIBF (RIKEN, Japan). A small change in the peak charge state produced at the stripper could require a significant expense in additional accelerating stages to obtain the required final energy. The main challenges are the thermal effects due to the high power deposition (~ 50 kW/mm3) and the radiation damage due to the high energy deposition. The effects of heavy ion beams are quite different from proton beams because of the much shorter range in matter. We will present an overview talk considering charge stripping devices like carbon foils and gas cells used worldwide as well as the current research efforts on plasma stripping, liquid metal strippers, etc. The advantages and disadvantages of the different options will be presented.
 
slides icon Slides FR1A01 [4.174 MB]  
 
FR1A02 Light Ion ECR Sources State of the Art for Linacs 1055
 
  • R. Gobin
    CEA/IRFU, Gif-sur-Yvette, France
  • N. Chauvin, O. Delferrière, O. Tuske, D. Uriot
    CEA/DSM/IRFU, France
 
  Since the middle of the 90’s development of high intensity light ion injectors are undertaken at CEA-Saclay. The first 100 mA proton beam has been produced by the SILHI ECR source in the framework of the IPHI project. Ever since, more than 100 mA of protons or deuteron beams, with high purities, have been regularly produced in pulsed or continuous mode, and with very good beam characteristics analyzed in dedicated beam diagnostics. CEA-Saclay is currently involved in several high intensity LINAC projects such as Spiral2, IFMIF-EVEDA and FAIR, and is in charge of their source and LEBT design and construction. This article reports the latest developments and experimental results carried out at CEA-Saclay for the 3 projects. In addition, a review of the developments and beam results performed in other laboratories worldwide will be also presented.  
slides icon Slides FR1A02 [4.743 MB]  
 
FR1A03
Commissioning and Operation of the Californium Rare Ion Breeder Upgrade at the ATLAS facility  
 
  • G. Savard
    ANL, Argonne, USA
 
  Recently commissioned Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility provides low-energy and reaccelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. In its present configuration, a 70 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci 252Cf source to produce radioactive beams with intensities up to 106 ions/sec for use in the ATLAS facility. The ECR charge breeder has achieved record high charge breeding efficiencies of radioactive beams.  
 
FR1A04 In Flight Ion Separation using a Linac Chain 1059
 
  • M. Marchetto, F. Ames, B. Davids, R.E. Laxdal, A.C. Morton
    TRIUMF, Vancouver, Canada
 
  The ISAC accelerator complex now can accelerate radioactive heavy ion beams to above the Coulomb Barrier. Recently an ECR type charge state booster has been added to allow the acceleration of radioactive beams with masses A>30. A characteristic of the ECR source is the efficient ionization of background species that can overwhelm the low intensity RIB beam. The long linac chain at ISAC can be used to provide some in flight separation both in time domain and in spatial domain analogous to fragment separators at in-flight fragmentation facilities. The talk will summarize the work done at TRIUMF to develop tools to aid in the filtration and diagnosis of beam purity in the post acceleration of charge bred beams. Marco Marchetto has been leading this effort.  
slides icon Slides FR1A04 [24.174 MB]  
 
FR1A05 SARAF Phase II P/D 40 MeV Linac Design Studies 1064
 
  • P.N. Ostroumov, Z.A. Conway, M.P. Kelly, A. Kolomiets, S.V. Kutsaev, B. Mustapha
    ANL, Argonne, USA
  • J. Rodnizki
    Soreq NRC, Yavne, Israel
 
  Funding: This work was supported by the ANL WFO No. 85Y47
The Soreq NRC initiated the establishment of SARAF – Soreq Applied Research Accelerator Facility. SARAF will be a multi-user facility for basic research, e.g., nuclear astrophysics, radioactive beams, medical and biological research; neutron based non-destructive testing (using a thermal neutron camera and a neutron diffractometer) and radio-pharmaceuticals research, development and production. The SARAF continuous wave (CW) accelerator is planned to produce variable energy (5-40 MeV) proton and deuteron beam currents (0.04-5 mA). Phase I of SARAF (ion source, radio-frequency quadrupole (RFQ), and one cryomodule housing 6 half-wave resonators (HWR) was installed and being operated at Soreq NRC delivering CW 1mA 3.5 MeV proton beams and low-duty cycle (0.0001) 0.3 mA 4.7 MeV deuteron beams. SARAF is designed to enable hands-on maintenance, which implies very low beam losses for the entire accelerator. The physics design of two options is explored to subsequently develop a conceptual design for selected option for extending the linac to its planned beam parameters (SARAF Phase-II: 40 MeV, 5 mA protons and deuterons).
 
slides icon Slides FR1A05 [3.459 MB]