Operation and Upgrades of the LCLS

J. Frisch¹, R. Akre¹, J. Arthur¹, R. Bionta², C. Bostedt¹, J. Bozek¹, A. Brachmann¹, P. Bucksbaum¹, R. Coffee¹, F.-J. Decker¹, Y. Ding¹, D. Dowell¹, S. Edstrom¹, P. Emma¹, A. Fisher¹, S. Gilevich¹, J. Hastings¹, G. Hays¹, Ph. Hering¹, Z. Huang¹, R. Iverson¹, H. Loos¹, M. Messerschmidt¹, A. Miahnahri¹, S. Moeller¹, H.-D. Nuhn¹, G. Pile³, D. Ratner¹, J. Rzepiela¹, D. Schultz¹, T. Smith¹, P. Stefan¹, H. Tompkins¹, J. Turner¹, J. Welch¹, W. White¹, J. Wu¹, G. Yocky¹, J. Galayda¹

¹ SLAC National Accelerator Laboratory, Stanford, CA 94309, USA, ² Lawrence Livermore National Laboratory, Livermore, CA 94550, USA, ³ Argonne National Laboratory, Argonne, IL 60439, USA.

LCLS Accelerator

Injector Emittances

Emittance < 0.4 um both planes at 250pc.

Emittance <0.2um both planes at 20pc (low charge mode)

Emittance at end of LINAC

0.7 X 0.7 um Emittance at 14 GeV compressed beam(3KA)

Result of extensive experience tuning the SLAC LINAC: LCLS had > 1 year to tune the injector and LINAC!

Orbit bumps used to cancel wakefield tails

Emittance History

Emittance typically 0.5um at 135 MeV

Emittance X BMAG at undulator entrance 0.7-3um depending on energy and peak current.

User Operation

- Adjust to match user requirements
 - FEL wavelength
 - Pulse length
 - Trade-off between power and spectral bandwidth (adjust undulator taper)
- Schedule
 - 12 hour experiment shifts
 - 1 day / week for maintenance / upgrades
 - -1 day/week for machine development

LCLS User Run 2

FEL Power

Highest operating power is at 2KeV, 150fs pulse Generally > 1mJ from 500eV to 9 KeV

run (5 mJ full scale)

Shorter bunches (down to 50fs) result in lower output pulse energy.

Best stability 2% RMS, more typically 5-10% RMS

Low Charge Operation

"Slotted Foil" short bunches

Short Pulse User Operation

- Low Charge Mode (20-40pC)
 - Low emittance \rightarrow high peak power
 - Couple hours to switch from normal to low charge
 - Recently developed 100pC mode to fill the gap between 40 and 250pC
- Slotted foil mode (at 250pC)
 - Fast pulse length tuning (just move foil)
 - Rapid switching from normal operation
- Both modes used for experiments

Low Charge AND Slotted Foil

With 20pc and slotted foil see single spike spectrum suggests very short pulses

No direct measurement but may be producing ~1fs X-ray pulses

- FEL can probably produce sub femtosecond pulses
- Most useful for pump / probe experiments to study ultra-fast phenomena
- Existing optical lasers can produce fewfemtosecond pulses (100as in the UV)
- Need precision timing control / measurement: State of the art is still~50fs.

Near Term Upgrades

Long Term - LCLS_II

LCLS_II will modify1km of the existing SLAC linac as a second 14 GeV accelerator

Can drive a new set of undulators in a new tunnel and experimental hall

Can be used in conjunction with existhing LCLS linac for up to 28 GeV for ultrahard X-rays or a high peak power FEL

TW 1Å FEL

LCLS Future Possibilities

- Existing beam brightness sufficient for 30-50 KeV FEL
- Use of 28 GeV LINAC (2 km) with selfseeding could produce > 1TW at 1Å
- 2 bunch (8.4 ns separation) lasing demonstrated. RF pulse can support 10 bunch operation
- Operation at 360 Hz at reduced energy being studied

