# **APPLICATIONS OF SPOKE CAVITIES**

#### Jean Delayen

#### Center for Accelerator Science Old Dominion University and Thomas Jefferson National Accelerator Facility





#### **Outline**

- Historical background
- Basic geometries
- Survey of properties
- Some applications
- Summary







# **History**

- The spoke cavity and the coaxial half-wave cavity were developed at ANL in the late 1980s with support from the Strategic Defense Initiative Program
  - ~10's mA, ~100 MeV, p and D, low emittance
  - Proposed for IFMIF
  - Proposed for ADS
- Support from SDI stopped in 1992, and in 1994 for IFMIF and ADS.
- Interest in those geometries was revived in the late 1990s at ANL for RIA and other laboratories for many other high-current ion accelerators
- The spoke geometry is now the geometry of choice in the medium velocity region and is being developed in many laboratories worldwide

Page 3







# 352 MHz, β=0.12 Coaxial Half-Wave (1989)







ANL







#### 850 MHz, β=0.3 Spoke (1990)





ANL





Page 5





#### Small Size

About half of TM cavity of same frequency

- Allows low frequency at reasonable size
  - Possibility of 4.2 K operation
  - High longitudinal acceptance
- Fewer number of cells
  - Wider velocity acceptance











- Strong cell-to-cell coupling in multi-spoke
  - All the cells are linked by the magnetic field
  - Field profile robust with respect to manufacturing inaccuracy
  - No need for field flatness tuning
  - Closest mode well separated



Magnetic Field Profile: 352 MHz, β=0.48 (FZJ)







#### Accelerating mode has lowest frequency

- No lower-order mode
- Easier HOM damping

Jefferson Lab

| Mode | Erea  | A F/F                 | Fred   | A f/f                 |
|------|-------|-----------------------|--------|-----------------------|
| #    | (MHz) | % of f <sub>ACC</sub> | (MHz)  | % of f <sub>ACC</sub> |
| 1    | 345   |                       | 1275.6 | 1.7                   |
| 2    | 365   | 5.7                   | 1277.6 | 1.6                   |
| 3    | 401   | 14                    | 1280.7 | 1.4                   |
| 4    | 442   | 28                    | 1284.5 | 1.1                   |
| 5    | 482   | 40                    | 1288.5 | 0.8                   |
| 6    | 519.7 | 51                    | 1292.4 | 0.5                   |
| 7    | 520.2 | 51                    | 1295.5 | 0.2                   |
| 8    | 534   | 55                    | 1297.6 | 0.05                  |
| 9    | 619   | 79                    | 1298.3 |                       |
| 10   | 679   | 97                    |        |                       |

3-spoke

M. Kelly (ANL)



9-cell (TESLA)

- Electromagnetic energy concentrated near the spokes
  325 MHz, Field Print
  - Low energy content

Jefferson Lab

- High shunt impedance
- Low surface field on the outer surfaces
  - · Couplers (fundamental and HOM) can be located on outer conductor

β=0.17

(FNAL)

Couplers do not use beamline space







#### Peak surface electromagnetic fields

- At high β, peak surface electromagnetic fields tend to be higher for spoke cavities
- Difference may be small at constant real estate gradient
- Spoke cavities will usually be used in applications where gradients are modest (cw and/or high-current)





• Few mechanical modes, none at low frequency



Lorentz Transfer Function: 345 MHz, β=0.5, triple-spoke (Z. Conway, ANL)

Page 11





### **Spoke Cavities Worldwide**

| Labs       | Spoke-type | Frequency<br>[MHz] | Geometrical<br>/Optimal betas | Eacc max<br>[MV/m] Epk [MV/m] |      | Bpk [mT]     |      | Voltage<br>gain [MV] |       | Limitation |        |          |             |
|------------|------------|--------------------|-------------------------------|-------------------------------|------|--------------|------|----------------------|-------|------------|--------|----------|-------------|
|            |            |                    |                               | 4.2 K                         | 2 K  | <b>4.2 K</b> | 2 K  | 4.2 K                | 2 K   | 4.2 K      | 2 K    | 4.2 K    | 2 K         |
| IPN Orsay  | Single     | 352                | 0.15/0.20                     | 4.8                           |      | 32.0         |      | 69.0                 |       | 0.8        |        | Quench   |             |
|            | Single     | 352                | 0.35/0.36                     | 8.1                           | 10.6 | 38.0         | 49.5 | 104.0                | 134.0 | 2.5        | 3.2    | Power    | Quench      |
| ANL        | Single     | 855                | 0.28/0.28                     | 4.4                           |      | 24.0         |      | 56.0                 |       | 0.3        |        | Power    |             |
|            | Single     | 345                | 0.29/0.29                     | 8.8                           | 8.6  | 40.0         | 39.0 | 106.0                | 105.0 | 2.2        | 2.2    | Quench   | Quench      |
|            | Single     | 345                | 0.40/0.40                     | 7.0                           | 7.3  | 44.0         | 46.0 | 117.0                | 123.0 | 2.4        | 2.6    | Quench   | Quench      |
| Double 345 |            | 0.40/0.40          | 8.6                           | 8.8                           | 40.0 | 41.0         | 79.0 | 81.0                 | 4.5   | 4.6        | Quench | Quench   |             |
|            | Triple     | 345                | 0.50/0.50                     | 7.7                           | 7.7  | 28.0         | 28.0 | 88.0                 | 88.0  | 6.7        | 6.7    | Quench   | Quench      |
|            | Triple     | 345                | 0.63/0.63                     | 7.9                           | 9.5  | 31.0         | 37.0 | 95.0                 | 114.0 | 8.7        | 10.4   | Quench   | Quench      |
| LANL       | Single     | 350                | 0.175/0.21 EZ01               | 7.5                           | 7.5  | 38.0         | 38.0 | 100.0                | 100.0 | 1.4        | 1.4    | Quench   | Quench      |
|            | Single     | 350                | 0.175/0.21 EZ02               | 7.2                           | 7.5  | 37.0         | 38.0 | 96.0                 | 100.0 | 1.3        | 1.4    | Quench   | Quench      |
| Juelich    | Triple     | 760                | 0.2/0.2                       | 8.6                           | 12.2 | 42.8         | 60.6 | 87.2                 | 123.3 | 1.4        | 1.9    | Quench   | Power       |
|            | Triple     | 352                | 0.48/0.48                     |                               |      |              |      |                      |       |            |        |          |             |
| Fermilab   | Single     | 325                | 0.21/0.21 SSR1-01             | 12.0                          | 9.1  | 43.7         | 33.0 | 69.7                 | 52.6  | 2.4        | 1.8    | Time out | Power limit |
|            | Single     | 325                | 0.21/0.21 SSR1-02             | 16.7                          | 22.0 | 60.8         | 80.2 | 96.8                 | 127.7 | 3.4        | 4.5    | Quench   | Quench      |
|            | Single     | 325                | 0.21/0.21 SSR1-03             |                               |      |              |      |                      |       |            |        |          |             |
|            | Single     | 325                | 0.21/0.21 SSR1-04             |                               |      |              |      |                      |       |            |        |          |             |

G. Olry, IPN Orsay



**JSA** 

Achieved gradients (single spoke)



352 MHz,  $\beta$ =0.35 (IPN Orsay)

Jefferson Lab

325 MHz, β=0.22 (FNAL)

HINS Jacketed SSR1-01 - Q<sub>0</sub> vs E Q-Disease Test at 4.8 K in SCTF



Achieved gradients (triple spoke)





Hydrogen degassing at 600°C (triple spoke)





Sensitivity to magnetic field





Q<sub>0</sub> degradation due to magnetic field captured during cooling down. (1 A (red) is 2 G field)

 $Q_0$  at low and high  $E_{acc}$  during period of multiple quenches in presence of 8-10 G magnetic field

325 MHz, β=0.22 (FNAL)







Microphonics and sensitivity to He pressure



Before optimization

Jefferson Lab

After optimization

345 MHz,  $\beta$ =0.5, triple-spoke (Z. Conway, ANL)



Page 17

Microphonics control with piezo tuners



345 MHz,  $\beta$ =0.5 Triple spoke (ANL)

Low frequency microphonics intentionally enhanced by connecting the cavity to forced-flow system





# **EURISOL**







#### **EURISOL**





# **EUROTRANS**







JSA

# **Spoke Cavity Integrated Tests (Orsay)**



Sebastien Bousson, 4<sup>th</sup> meeting ESSS reference group







## Fermilab Project X







Page 23

# Fermilab Project X



#### 325 MHz, $\beta$ =0.22









# **European Spallation Source**

#### Bilbao 2009 concept



#### Scandinavia 2009 concept

| System   | Т   | Energy | Freq. | $\beta$ | Length |
|----------|-----|--------|-------|---------|--------|
|          | [K] | [MeV]  | [MHz] | v/c     | [m]    |
| Source   | 300 | 0.075  | _     | -       | 2.5    |
| LEBT     | 300 | -      | -     | _       | 1.1    |
| RFQ      | 300 | 3      | 352.2 | _       | 4.0    |
| MEBT     | 300 | _      | 352.2 | _       | 1.1    |
| DTL      | 300 | 50     | 352.2 | _       | 19.2   |
| SSR      | 4   | 80     | 352.2 | 0.35    | 23.3   |
| TSR      | 4   | 200    | 352.2 | 0.50    | 48.8   |
| Ellipt-1 | 2   | 660    | 704.4 | 0.65    | 61.7   |
| Ellipt-2 | 2   | 2500   | 704.4 | 0.92    | 154.0  |







# **European Spallation Source**



Table 1: Primary ESSS performance parameters in the long pulse conceptual design. There is no accumulator ring.

| INPUT                 |       | Nominal | Upgrade |
|-----------------------|-------|---------|---------|
| Average beam power    | [MW]  | 5.0     | 7.5     |
| Macro-pulse length    | [ms]  | 2.0     | 2.0     |
| Pulse repetition rate | [Hz]  | 20      | 20      |
| Proton kinetic energy | [GeV] | 2.5     | 2.5     |
| Peak coupler power    | [MW]  | 1.0     | 1.0     |
| Beam loss rate        | [W/m] | < 1.0   | < 1.0   |
| OUTPUT                |       |         |         |
| Duty factor           |       | 0.04    | 0.04    |
| Ave. pulse current    | [mA]  | 50      | 75      |
| Ion source current    | [mA]  | 60      | 90      |
| Total linac length    | [m]   | 418     | 418     |

| System       | Energy | Freq. | $\beta_{Geo}$ | No. of   | Length |
|--------------|--------|-------|---------------|----------|--------|
|              | MeV    | MHz   |               | modules  | m      |
| Source       | 0.075  | _     | _             | _        | 2.5    |
| LEBT         | 0.075  | _     | _             | —        | 1.6    |
| RFQ          | 3      | 352.2 | _             | 1        | 4.0    |
| MEBT         | 3      | 352.2 | _             | —        | 2.5    |
| DTL          | 50     | 352.2 | _             | 3        | 19     |
| Spokes       | 200    | 352.2 | 0.45          | 14       | 52     |
| Low $\beta$  | 500    | 704.4 | 0.63          | 10       | 57     |
| High $\beta$ | 2500   | 704.4 | 0.75          | 19 (21*) | 215    |

\*High power LINAC



2010 concept





#### How High Can We Go with $\beta_g$ in Spoke Cavities?

- What are their high-order modes properties?
  - Spectrum
  - Impedances
  - Beam stability issues
- Is there a place for spoke cavities in high-β high-current applications?
  - FELs, ERLs
  - Higher order modes extraction







#### How High Can We Go with $\beta_g$ in Spoke Cavities?

- Activities in this area are finally starting
  - ODU-JLab collaboration to develop a 352 MHz,  $\beta$ =0.8 double-spoke cavity
  - ODU-Niowave collaboration to develop a 500 MHz, β=1 double-spoke cavity. Plan is to test it with the Naval Postgraduate School superconducting gun







# **Compact Light Sources**

- Most existing SRF cavities require or benefit from 2K operation
  - Too complex for a University or small institution-based accelerator
  - Cryogenics is a strong cost driver for compact SRF linacs
- Spoke cavities can operate at lower frequency
  - Lower frequency allows operation at 4K
  - No sub-atmospheric cryogenic system
  - Significant reduction in complexity

Jefferson Lab

 Similar designs for accelerating low-velocity ions are close to desired specifications



# **Compact Light Sources**





# **Parting Thoughts**

- The first spoke cavity was developed 20 years ago
- The spoke geometry has many attractive features
- Many prototypes have been, or are being, developed in many institutions
  - 300 to 850 MHz
  - $\beta$  from <0.2 to 1

- They are not yet in use in any operating machine
- The main argument against using them seems to be that they are not in use yet
- Many thanks to all the colleagues who have provided information



