

L. Groening, W. Barth, W. Bayer, G. Clemente, L. Dahl, P. Forck, P. Gerhard, I. Hofmann, M.S. Kaiser, M. Maier, S. Mickat, T. Milosic, G. Riehl, H. Vormann, S. Yaramyshev, *GSI, Germany*

D. Jeon, ORNL, U.S.A.

D. Uriot, CEA/Saclay, France

- Transverse Resonance in a Linac
- Experiment: Set-up & Results
- Parametric Resonance (inter-plane coupling long. ↔ transv.)
- Experimental Results

campaign embedded into HIPPI: <u>High Intensity Pulsed Proton Injectors</u> HIPPI was part of the EU-supported CARE activity

GSI

- perturbing device (magnet, cavity, ...) acts on particle just once
- single devices cannot cause resonant perturbation
- high beam current :
 - space charge (sc) acts on particle
 - sc force acts permanently
 - sc force varies with envelope size
 - periodic change of envelope \rightarrow periodic sc force on particle

 $\sigma_{\rm part} < \sigma_{\rm env} = 360^{\circ}$

Model for Resonance

- matched envelope
- envelope has radial symmetry
- periodically breathing envelope, phase advance σ_{env}
- particle experiences :
 - constant external focusing σ_o
 - electric field of breathing envelope with radius R(s)

envelope charge density depends on radius r :

$$\begin{split} \rho(r) &= \rho_o(s) \cdot \left[1 - \frac{r^2}{R(s)^2} + O(r) \right] & \text{density component (r^2), } r^{\geq 4} \text{ neglected} \\ \\ \text{creating a field :} \\ E_r &= \frac{18 \cdot I}{\pi \epsilon_o \cdot R(s)^2 \beta c} \left[r - \frac{r^3}{2R(s)^2} \right], \quad r \leq R(s) & \text{octupolar field component (r^3)} \end{split}$$

GSI

single particle equation (lattice + sc) :

$$r'' + \left[\sigma_o^2 - \Delta\sigma^2\right] r = a \cdot r^3 \cdot e^{i\sigma_{env}s}$$

$$r'' + \sigma^2 r = a \cdot r^3 \cdot e^{i\sigma_{env}s}$$

perturbed oscillator

depressed phase advance

resonance condition : $\sigma_{env} = 4\sigma$ envelope oscillates 4 times faster than single particle $\sigma_{env} = 360^{\circ} \rightarrow \sigma = 90^{\circ}$ 4th order resonance occurs at $\sigma = 90^{\circ}$, i.e. $\sigma_{o} \ge 90^{\circ}$

L. Groening, Experimental Observation of Space Charge Driven Resonances in a Linac

Direct measurement requires :

- measurement of the phase space distribution (no quad scan)
- 100% beam transmission (resonant "wing" particles lost first)
- matched beam envelope :
 - periodic perturbation by space charge
 - mitigate mismatch emittance growth

DTL matching with space charge is most difficult part of experiment

- never observed directly
- simulations by D. Jeon (SNS/ORNL) suggested measuring resonance at GSI UNILAC
- simulations predicted dominance over envelope instability

Experiment at GSI UNILAC :

- install beam emittance measurement unit behind first DTL tank
- exploit experience from previous experiments to optimize UNILAC settings (matching !)

GSI

• measure phase space distributions and extract rms emittances

UNILAC Alvarez DTL : 1st tank

• ions: protons to uranium

ACCELERATOR CONFERENCE

- acceleration: 1.4 3.6 MeV/u
- 108 MHz

TSUKUBA, JAPAN SEPTEMBER 12 - 17, 2010

TH303

- synchr. rf-phase -30° $\rightarrow \sigma_{l,o}$ = 43°
- F-D-D-F focusing
- 15 full lattice periods
- length \approx 12 m
- max. transv. phase advance σ_o :
 - protons : 180°
 - ⁴⁰Ar¹⁰⁺ : 180°
 - ²³⁸U²⁷⁺ : 62°

⁴⁰Ar¹⁰⁺, 7.1 mA

- 1. selfconsistent backtracking finding $(\alpha,\beta,\epsilon)_{||}$ that fit to measured bunch length
- 2. verification: settings reproduce 100% transmission, no low-energy tails

- beam parameters at beginning of matching section from emittance measurement
- periodic solution at DTL entrance calculated numerically
- section to be set to match this solution
- 7 knobs : 5 quadrupoles + 2 re-bunchers

- rms envelope equations to obtain beam Twiss params. at DTL entrance
- seven variables to minimize one value, i.e. the sum of mismatches hor., ver., and long.
- solved numerically

Measurements: DTL Exit rms Emittance vs. σ_{o}

- strong growth approaching $\sigma_o \approx 100^\circ$
- tune depression: $\sigma_o \approx 100^\circ \rightarrow \sigma \approx 90^\circ = 360^\circ / 4$
- good agreement with three simulation codes
- strong hint for space charge driven 4th order resonance

INEAR ACCELERATOR CONFERENCE

TSUKUBA, JAPAN SEPTEMBER 12 - 17, 2010

TH303

Proof for 4th Order Resonance in the UNILAC

L. Groening, Experimental Observation of Space Charge Driven Resonances in a Linac

LINAC10

TSUKUBA, JAPAN SEPTEMBER 12 - 17, 2010

Transverse Phase Advance (Zero Current) [deg]

GSI

DTL too short and/or mismatch too small for envelope instability growth

- first direct measurement of space charge driven resonance
- resonance dominates envelope instability as predicted by D. Jeon in PRST-AB 12, 054204 (2009)

651

- evidence for enveloped-matched operation of the UNILAC DTL
- details in PRL 102, 234801 (2009)

- Hofmann charts: well excepted linac design tool
- simulations: just $\sigma_{\parallel} \approx \sigma_{\perp}$ harmful to machine performance

- no experimental verification
- experiment done at GSI UNILAC, first DTL tank

L. Groening, Experimental Observation of Space Charge Driven Resonances in a Linac

• tune ratio approaches $1.0 \rightarrow$ increased transv. growth measured

GSI

• result in good agreement with simulations

L. Groening, Experimental Observation of Space Charge Driven Resonances in a Linac

Hofmann's Charts confirmed, details in PRL 103, 224801 (2009)

GSI

- first direct measurement of 4th order space charge driven resonance
- UNILAC DTL: 4th order resonance dominates envelope instability (exp. confirmation)

GSI

• first experimental confirmation of Parametric Resonance (Hofmann Charts)

