

Power coupler development for high intensity superconducting linacs

G. Devanz CEA-Saclay

G. Devanz - CEA/Saclay - Linac10 Tsukuba

œ

saclay

Power needs in SC H+/H- pulsed linacs

	SPL	ESS	SNS	SNS upgrade
RF frequency	352/704	352/704	402/805	402/805
Beam current (mA)	40	50 (75)	38	59
Repetition frequency (Hz)	50	20	60	60
RF Pulse length (ms)	0.6 – 2	2	1.3	1.3
High β Elliptical cavities (MV/m)	20 - 25 5-cell	15 - 20 5-cell	13 - 15 6-cell	15 - 18? 6-cell
Peak Power delivered (kW)	1000	900	550 design 300 beam	600 ? (depends on Eacc reached in cavities)

Q_{ext} of the order of 10⁶ Power margin for RF control

Courtesy M. Stirbet

SNS couplers

saclay

RF window

- 50 Ω coaxial line
- VSWR <1.1 at 805 MHz
- required Q_{ext} : 5 x 10⁵ ± 20%
- power ratings: 400 kW at 7% duty cycle, design 550 kW
- operating pressure: < 5 10⁻⁹ mbar
- ± 5 kV Bias Voltage
- He gas cooling on the outer conductor (0.3 g/s, 3 atm, inlet 5K exit 300 K)
- Water cooling on inner conductor extension (300 K)
- Possibility to water cool the ceramic outer diameter

Courtesy M. Stirbet

œ

saclay

SNS couplers tests and operation statistics

	Design	Conditioning	Machine operation
Peak power (kW) in TW	550	650 - 1000 at Oak Ridge 1000 at Jlab	300
Peak power (kW) in SW	550	600	300

84 couplers were conditioned81 running on the SNS0 coupler failed

For the SNS upgrade

- The 650 kW 1 MW range the couplers have been tested is sufficient
- •Cold cathode Pressure gauge replaced
- •Reduce thermal leak (end group are from Low RRR, quench observed)
 - Remote control of the He flow valves, discrepancies among couplers
 - Improve antenna cooling to reduce radiative losses

Courtesy M. Stirbet See poster THP051

G. Devanz - CEA/Saclay - Linac10 Tsukuba

J-Parc 972 MHz coupler

saclay

	Design
Frequency (MHz)	972
Impedance (Ω)	50
Diameter (mm)	80
Qext	5 10 ⁵
Peak power (kW)	300
Pulse length (ms)	3
Repetition rate (Hz)	25

E. Kako et al. PAC03

Test	Pulsed operation	Max. rf power
1. Init	ial Tests:	
	0.1msec, 10Hz	300kW
	2.45msec, 25Hz	350kW
2. Exp	posure to N ₂ gas:	
	0.1msec, 10Hz	300kW
	2.45msec, 25Hz	350kW
	0.6msec, 25Hz	1100kW
3. Kej	ot for one month wi	thout pumping:
	0.1msec, 25Hz	1700kW
	0.6msec, 25Hz	2200kW
	Standing Wave	650-800kW
4. Exp	posure to air:	
-	0.1msec, 25Hz	360kW
	3.0msec, 25Hz	370kW
	Standing Wave	370kW

- Max. average power on the test stand 21 kW, limited by klystron power available
- turning off the water cooling of the inner conductor, antenna tip temperature increased by 100K
- Couplers tested on the prototype cryomodule connected to cavities at 2K

CEA-Saclay 704 MHz coupler

		Design
saclay	Frequency (MHz)	704
	Impedance (Ω)	50
	Diameter (mm)	100
	Qext	1.8 10 ⁶
	Peak power (kW)	1000
	Pulse length (ms)	2
	Repetition rate (Hz)	50

- KEK type warm window matched at 704 MHz
- Water cooling of the inner conductor
- Cold part : double wall with He gas. Cu deposited by magnetron sputtering at CERN

• DC bias

CEA-Saclay 704 MHz coupler

		Design	Conditioning	Cavity 1.8 K Cryholab (β =0.47)
saclay	Peak power (kW) in TW	1000	1200, 2 ms 50 Hz	-
	Peak power (kW) in SW	1000	940, 1 ms, 0.31 Hz	1000, 2 ms 50 Hz, cavity off resonance

It is foreseen to test the coupler in CW on the cavity at 1.8 K to evaluate the dynamic losses

G. Devanz - CEA/Saclay - Linac10 Tsukuba

CERN SPL 704 MHz couplers

saclay

• 50 Ω

• SPS type window, RF matching using the waveguide transition

- DC bias
- Air cooled antenna
- LHC type double wall for He cooling

Prototypes are currently manufactured. Test is foreseen in 2011 at Saclay

Courtesy E. Montesinos

CERN SPL 704 MHz couplers

saclay

Window of first prototype after brazing

Same caracteristics but with LHC type cylindrical window

Courtesy E. Montesinos

G. Devanz - CEA/Saclay - Linac10 Tsukuba

G. Devanz - CEA/Saclay - Linac10 Tsukuba

SRF ion CW linacs

IPN-Orsay Eurisol Spoke coupler

- window outer diameter cooling channel
- supercritical He heat exchanger (3 atm, 6 K)
- Test in the horizontal cryostat with the cavity done at 4.5 K and 2 K

	Design	Conditioning	Cryomodule test
Max. power (kW) in TW	20	8.8 (max. available)	-
Max. power (kW) in SW		-	4

G. Devanz - CEA/Saclay - Linac10 Tsukuba

Courtesy E. Rampnoux

Doorknob Transition

All components are fabricated Will be conditioned using a 80 kW IOT

Doorknob transitions

Coupling cavity for tests

G. Devanz - CEA/Saclay - Linac10 Tsukuba

Courtesy E. Rampnoux

```
lrfu
```

IFMIF-Eveda coupler – CEA-Saclay

G. Devanz - CEA/Saclay - Linac10 Tsukuba

30

15

b.

20

Resonator Index

25

35

saclay

Power needs for SRF ERLs

ERL injectors :

large CW beam current, moderate Eacc : high power ERL main linacs:

ERL mechanism, losses and microphonics to compensate : low power in SW

	BNL	Cornell	KEK
Frequency (MHz)	703.75	1300	1300
Beam current (mA)	500	100	50 (100)
Max. Power per coupler Injector (kW)	500	50	58 (167)
Max. Power main linac (kW) SW	-	5	20

At 1.3 GHz the TTF-3 coupler needs cooling to sustain more than 5 kW CW in standing wave (tested at BESSY in Hobicat)

2 couplers per cavity to preserve field symmetry

lrfu

KEK ERL injector

	Injector
Frequency (MHz)	1300
Beam current (mA)	50 (100)
Qext	4.5 (3.3) 10 ⁵
Max. Power per coupler (kW)	58 (167)

KEK ERL injector - conditioning

Conditioning	Goal	Done
Max. power TW (kW)	300 CW	100 CW, paused resuming in october 2010

Courtesy E. Kako

KEK ERL main linac

saclay		vacuum		
SC cavity	WS IN C	Cold window	Warm windo	»w
21	5K 80K	300K	Gas cooling of Inner conductor	
				RF

	Main linac
Frequency (MHz)	1300
Beam current (mA)	50 (100)
Qext	5 10 ⁶ - 2 10 ⁷
Max. Power per coupler (kW)	20 SW

- Adjustable coupling
- Warm and cold window
- Air cooled antenna

Conditioning	Goal	Done
Max. power SW (kW)	20 CW	27 CW

First design: resonant dipole mode in the ceramic disk very close to the operating frequency (1305 MHz) damaged the window Disk thickness was modified : mode shifted to 1335 MHz, safe conditioning

K. Umemori

BNL ERL injector

	Injector
Frequency (MHz)	703.75
Beam current (mA)	500
Qext	3.7 10 ⁴
Max. Power per coupler (kW)	500

1/2 cell SRF gun

- Water cooling for all parts but the double wall
- A new WG transition is designed without water cooling
- 6 couplers build, one test to 1MW CW foreseen

Temperature Contours FPC

G. Devanz - CEA/Saclay - Linac10 Tsukuba

& M. Cole (AES)

lrfu

Cornell ERL injector

	Injector
Frequency (MHz)	1300
Beam current (mA)	100
Qext	9.2 10 ⁴ - 8.2 10 ⁵
Max. Power per coupler (kW)	50

Courtesy S. Belomestnykh

	r	f	u	
(E	Ň	С	
S	ас		аy	

Cornell ERL injector

- Design derived from the TTF-III coupler
- The cold part was completely redesigned using a 62 mm, 60 Ohm coaxial line for stronger coupling, better power handling and avoiding multipacting
- □ Antenna tip was enlarged and shaped for stronger coupling
- "Cold" window was enlarged to the size of "warm" window
- Outer conductor bellows design was improved for better cooling (added heat intercepts)
- Air cooling of the warm inner conductor bellows was added

Frequency	1300 MHz	
Bandwidth	±10 MHz	
Max. power transfer to matched load	75 kW	
Number of ceramic windows	2	Warm V
Cold coax. line impedance	60 Ohm	
Warm coax. line impedance	46 Ohm	
Coax. line OD	62 mm	
$Q_{\rm ext}$ range	9.2 $\cdot 10^4$ to 8.2 $\cdot 10^5$	
Antenna stroke	> 15 mm	
Heat leak to 2 K	< 0.2 W	
Heat leak to 5 K	< 3 W	2 K Flange / Cold Window 80 K Flange 300 K Flange
Heat leak to 80 K	<75 W	
		Courtesy S. Belomestnykh

saclay

Cornell ERL injector coupler tests

Conditioning	Goal	Done
Max. power TW (kW)	75 CW	61 CW 85 kW pulsed for production couplers
Max. power SW (kW)		25 kW full reflection in the cryomodule

Courtesy S. Belomestnykh

Jlab developments

Coaxial pre-stressed window

saclay

2 technologies :

- Brazing
- Compression
 bonding

WR 650 pre-stressed brazed window used a gas barrier, water cooled (1.5 GHz)

Tests	Goal	Done
Max. power TW (kW)	50	60 in CW
Max. power SW (kW)	50	30 in CW all phases

R. Rimmer, M. Stirbet

Double window coupler concept •No matching element required •2 disks spaced by $\sim \lambda/2$

• can be applied to wide range of frequencies

saclay

Conclusion

• With current developments and first results, we can be optimistic about the availability of couplers that match the needs of high intensity linac projects

•Only two examples of couplers on SRF linacs with good statistics, TTF and SNS.

• All couplers which pass the test of room temperature conditioning with strict criteria on vacuum behavior and electronic activity are assembled on the linac. The difficult choice is : up to which power level ?

- XFEL : 1 MW in test for 150 kW nominal
- SNS : 650 kW or 1 MW in test for 550 kW nominal

• The fact is : once on the linac, they don't fail during the lifetime of the machine, but their instrumentation do (procedures, QC).

• This may explain why most of the couplers for high intensity linacs derive from the TTF and KEK model

• Coupler tests are often limited by the available RF power source, therefore it is difficult to define margins in terms of peak power for a coupler

•Few examples of aggressive development (BNL), although 1MW CW was demonstrated by APT (LANL) couplers.

Some history

THE INPUT COUPLER FOR THE KEKB ARES CAVITY

F. Naito, H. Sakai, S. Yoshimoto, H. Mizuno, N. Akasaka, T. Kageyama, Y. Takeuchi K. Akai, E. Ezura, H. Nakanishi and Y. Yamazaki Accelerator Laboratory, KEK, Oho 1-1, Tsukuba, 305-0801, Japan

Abstract

We have developed the input coupler for the ARES cavity and carried out the high-power test of the coupler by using the coupler test stand. The couplers have succeeded in 'ransmitting the rf-power of about 1 MW (508 MHz, CW).

1. Introduction

For the KEK B-factory, the Accelerator Resonantly coupled with Energy Storage (ARES) cavity has been developed. The ARES cavity requires the rf-power of about 400 kW per cavity with the full beam loading of the B-factory. [1]

In order to feed the rf power to the ARES cavity, we have developed the new input coupler. [2] The target rf power to be transmitted by the coupler is set to 800 kW (CW) which is twice the required value.

It is well known that the performance of the coubler strongly depends on the ceramic window structure. The nost powerful coupler in KEK is the output coupler of the JHF (508 MHz) klystron developed for the rf cavities of he TRISTAN. It can transmit the 1.2 MW (CW) rf power. 3] The klystron output coupler has the disk-type coaxial ceramic window. Thus the klystron output coupler is the good standard for the coupler of the ARES. However the vacuum condition of the input coupler of an accelerating cavity is much worse than that of klystron output coupler. Thus total performance of the input coupler is probably lower han that of the klystron output coupler. the choke structure for the impedance matching of the window.

The surface of the window in vacuum side has the TiN coating of about 1 nm in thickness in order to reduce the coefficient of the secondary electron emission.

The coaxial wave guide of the coupler and the door knob transformer are made of copper and the rectangular wave guide is made of aluminum. The total weight of the coupler is about 50 kg.

Thanks to

Sang-Ho Kim Mircea Stirbet Eric Montesinos Vyacheslav Yakovlev Emanuel Rampnoux Hassen Jenhanni Sergey Belomestnykh Joseph Orrett Eiji Kako Ilan Ben-Zvi