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Abstract 

Particle-core interaction is a well-developed model of halo 
formation in high-intensity beams [1-5]. In this paper, we 
present an analytical solution for averaged, single particle 
dynamics, around a uniformly charged beam. The problem 
is analyzed through a sequence of canonical 
transformations of the Hamiltonian, which describes 
nonlinear particle oscillations. A closed form expression 
for maximum particle deviation from the axis is obtained. 
The results of this study are in good agreement with 
numerical simulations and with previously obtained data. 

PARTICLE-CORE MODEL 

The model is based on a simultaneous solution of an 
equation for oscillation of beam envelope, r=R/Ro, around 
an equilibrium beam radius Ro, and an equation for 
particle deviation from the axis u=x/Ro: 
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where = rt  is the dimensionless time, r  is the 
frequency of particle oscillation in a uniform focusing 
channel, b is the dimensionless space charge parameter 
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I is the beam current, Ic = 4 omc
3
/ q  is the 

characteristic beam current,  is the normalized beam 
emittance,  is the particles velocity, and   is the particle 
energy. 

Fig. 1 illustrates typical single-particle trajectories 
around an oscillating core, resulting from numerical 
integration of Eqs. (1), and (2). Depending on initial 
conditions, a particle can oscillate (a) inside the core, (b) 
around the core, (c) far away from core with constant 
amplitude, and (d) resonantly with the core. Fig. 2 
illustrates the same trajectories as stroboscopic images in 
phase space, where particle positions and velocities are 
measured after each core oscillation period. 
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Figure 1: (Red) envelope oscillations of the beam with 
space charge parameter b = 3, amplitude  = 0.2, and 
(blue) single particle trajectories with initial conditions (a) 
xo/Ro=0.8, (b) xo/Ro =1.071, (c) xo/Ro =1.728, (d) xo/Ro 
=1.082. 

 
Figure 2: Stroboscopic particle trajectories at phase plane 
(u, du/d ) taken consequently after each envelope 
oscillation period: (a) xo/Ro=0.8, (b) xo/Ro =1.071, (c) xo/Ro 
=1.728, (d) xo/Ro =1.082. 
 
The beam envelope performs oscillations in a continuous 
focusing channel around an equilibrium value 
r = 1 + cos(2 )  where the envelope oscillation 
frequency is 

2 = 2(
2 + b

1 + b
) .    (4) 

 
The space charge field of a uniform beam consists of a 
linear oscillating part as well as non-oscillating nonlinear 
part (see Eq. (2)). Following Ref. [1], we approximate the 
nonlinear part by a cubic term. With this approximation in 
place, the equation of particle motion becomes: 
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Then, using the expansion 
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equation of particle motion takes the form: 
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Equation (7) corresponds to the Hamiltonian, which can 
be written as: 
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where the following notations are used: 

2
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The Hamiltonian, Eq. (8), describes an anharmonic 
oscillator with parametric excitation. Presence of 
nonlinear term ~u4 limits amplitude of particle oscillation 
around the core. 

 

 

AVERAGED HAMILTONIAN 
 

Let us change the variables 
 
(u, u)  in the Hamiltonian, 

Eq. (8), to new variables (Q, P) using a generating 
function: 
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The relationships between the variables are given by 
Q = F2 / dP , 

 
u = F2 / du which results in the following 

transformation [6]: 

 {
u = Q cos +

P
sin

u = Q sin + P cos

.
 

(11) 

Transformation (11) is a representation of a solution of 
the equation of a single particle motion as a combination 
of fast oscillating terms, which have the frequency , and 
the slow variables, Q, P. The new Hamiltonian is given 
by: 
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After averaging all time-dependent terms over a period of 
T=2 / , the Hamiltonian, Eq. (12), takes on a simple 
form: 
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where Q, P  are the average values of variables over a 

period T. Let us make an additional canonical 

transformation and change variables (Q, P ) to action-

angle variables (J, ) utilizing generating function 
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Q 2
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Transformation here is given by: 
 

Q =
2J
sin ,      P = 2J cos .        (15) 

 

Utilizing transformation, Eqs. (15), the Hamiltonian, Eq. 
(13) can be rewritten as: 
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with the following notations: 
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Hamiltonian, Eq. (16), describes the excitation of a 
nonlinear parametric resonance. Phase space trajectories, 
corresponding to constant values of Hamiltonian (16) are 
presented in Fig. 3. There are two types of separatrices at 
phase plane. The inner separatrix corresponds to particle 
motion around the beam core. Two other separatrices 
correspond to resonant particle oscillations outside the 
beam core. As stated before, presence of nonlinear term 
limits the maximum amplitude of particle oscillations, and 
the width of the resonance defines the maximum 
deviation of the particle from the axis. 

 

NONLINER PARAMETRIC RESONANCE 

Let us now determine the maximum deviation of the 
particle from the axis. There are specific fixed points 
(stable, Js, and unstable, Ju) present in the phase plane of 
averaged motion, see Fig. 3. The locations of the fixed 
points follow directly from Hamiltonian, Eq. (16): 
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The first equation has a solution sin2   = 0. Under this 
condition, the unstable points are determined by equations 
 

cos 2 = 1 , = 0, ,     Ju =
+ 2

2
,    (20) 

 

while stable points are determined as 
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2
.     (21) 

 

Particle with initial conditions, that are close to an 
unstable point Ju, can perform either small amplitude 
oscillations inside the inner separatrices, or large - 
amplitude oscillations with a maximum amplitude up to 
Jmax. Let us now define the value of Jmax.  

The value of the Hamiltonian is the same at the internal 
and at the external separatrices. At the internal separatrix, 
the value of Hamiltonian Ku = K (Ju )  can be obtained 

from Eqs. (16), (20): 
 

Ku =
( + 2 )2

4
.  (22) 

 

The outer separatrix touches the inner one at the unstable 
point Ju. Particle with the value of Hamiltonian K (Ju )  

can reach the point Jmax having  =  /2. The value of Jmax 

is defined by the substitution K = Ku  and cos 2  = -1 

into equation (16): 

Jmax
2
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Thus, the solution for Jmax reads: 
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( + 2 ) + 8

2
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The value of J is related to the variables (u, du/d ) via 
Eqs. (11), and (15) as: 
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The maximum value that a particle can take on for its 
position given by Eq. (25) is therefore 

u
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/ , or: 
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In Fig. 4 the value of umax = xmax/Ro, Eq. (26), is 

presented as a function of envelope amplitude , for 
different values of the beam space charge parameter b. 
These dependencies show that maximum deviation of a 

particle from the axis can be several times larger than the 
beam core size. For comparison, Fig. 4 also contains an 
empirical dependence 

 

xmax

(Ro / 2)
= A + B ln(μ) ,   (27) 

 

where A = B = 4, μ  = 1+ , obtained in Ref. [3] as a 
generalization of numerical and experimental data. 
Comparison shows good agreement between analytical 
predictions, Eq. (26), and previously obtained data. 
 
 

 
Figure 3: Phase space trajectories of averaged particle 
motion around the beam core, Eq. (16). 
 

 
 

Figure 4: Maximum deviation of a particle from the axis 
as a function of amplitude of core oscillation, Eq. (26). 
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