A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

luminosity

Paper Title Other Keywords Page
MOP023 The Accelerating Structure for a 500 GeV CLIC linac, wakefield, damping, accelerating-gradient 100
 
  • A. Grudiev, D. Schulte
    CERN, Geneva
 
 

The rf design of an accelerating structure for the 500 GeV CLIC main linac is presented. The design takes into account both aperture and HOM damping requirements coming from beam dynamics as well as the limitations related to rf breakdown and pulsed surface heating. In addition, the constraints related to the compatibility with 3 TeV CLIC have been taken into account. The structure is designed to provide 80 MV/m averaged accelerating gradient at 12 GHz with an rf-to-beam efficiency as high as 39.8 %.

 
MOP024 Status of the CLIC Phase and Amplitude Stabilisation Concept linac, feedback, klystron, FEL 103
 
  • D. Schulte, A. Andersson, S. Bettoni, R. Corsini, A. Dubrovskiy, A. Gerbershagen, J.B. Jeanneret, G. Morpurgo, G. Sterbini, F. Stulle, R. Tomás
    CERN, Geneva
  • A. Aksoy
    Ankara University, Faculty of Engineering, Tandogan, Ankara
  • V.R. Arsov, M.M. Dehler
    PSI, Villigen
  • P. Burrows, C. Perry
    JAI, Oxford
  • F. Marcellini
    INFN/LNF, Frascati (Roma)
 
 

In CLIC very tight tolerances exist for the phase and amplitude stability of the main and drive beam. In this paper we present the status of the CLIC beam phase and amplitude stabilisation concept. We specify the resulting tolerances for the beam and technical equipment and compare to first measurements.

 
THP024 Design Sensitivities of the Superconducting Parallel-Bar Cavity cavity, HOM, superconductivity, higher-order-mode 812
 
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia
 
 

The superconducting parallel-bar cavity has properties that makes it attractive as a deflecting or crabbing rf structure. For example it is under consideration as an rf separator for the Jefferson Lab 12 GeV upgrade and as a crabbing structure for a possible LHC luminosity upgrade. In order to maintain the purity of the deflecting mode and avoid mixing with the near accelerating mode caused by geometrical imperfection, a minimum frequency separation is needed which depends on the expected deviations from perfect symmetry. We have done an extensive analysis of the impact of several geometrical imperfections on the properties of the parallel-bar cavities and the effects on the beam, and present the results in this paper.