A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Wiesner, C.

Paper Title Page
MOP100 Bunch Compressor for Intense Proton Beams 292
 
  • L.P. Chau, M. Droba, O. Meusel, D. Noll, U. Ratzinger, C. Wiesner
    IAP, Frankfurt am Main
 
 

The Frankfurt Neutron source FRANZ is under construction*. The ARMADILLO bunch compressor** as a part of it is composed of a 5MHz electric kicker, a magnetic dipole chicane and rf-rebunching cavities. The design phase of the bunch compressor has reached the final stage. A 175MHz 2MeV proton linac forms 100ns long beam pulses consisting of nineμbunches with 150mA. Deflected by the 5MHz kicker theμbunches are guided on different paths to arrive within 1ns at a n-production target. Due to high space charge forces rebuncher cavities are included***. The peak current at the target is expected to be in the range of 10A in a 1ns proton pulse, which is equivalent to a longitudinal pulse compression ratio of 45. A new code specific for complex magnetic multi aperture system and for high current applications has been developed. Hardware designs according to the beam dynamics results are in progress. Improved 3D magnetic and electric fields will be applied in the future beam dynamics studies including high space charge forces. The preliminary designs and the beam dynamics studies will be presented in this contribution.


* O. Meusel, et al.: LINAC06, Knoxville, Tennessee USA, 2006, pp. 159-161.
** L. P. Chau, et al.: EPAC08, Genoa, Italy, 2008, pp. 3578-3580.
*** D. Noll, another contribution at this conference.

 
TH203 Bunch Compressor for Intense Proton Beams 730
 
  • L.P. Chau, M. Droba, O. Meusel, D. Noll, U. Ratzinger, C. Wiesner
    IAP, Frankfurt am Main
 
 

The Frankfurt Neutron source FRANZ is under construction*. The ARMADILLO bunch compressor** as a part of it is composed of a 5MHz electric kicker, a magnetic dipole chicane and rf-rebunching cavities. The design phase of the bunch compressor has reached the final stage. A 175MHz 2MeV proton linac forms 100ns long beam pulses consisting of nineμbunches with 150mA. Deflected by the 5MHz kicker theμbunches are guided on different paths to arrive within 1ns at a n-production target. Due to high space charge forces rebuncher cavities are included***. The peak current at the target is expected to be in the range of 10A in a 1ns proton pulse, which is equivalent to a longitudinal pulse compression ratio of 45. A new code specific for complex magnetic multi aperture system and for high current applications has been developed. Hardware designs according to the beam dynamics results are in progress. Improved 3D magnetic and electric fields will be applied in the future beam dynamics studies including high space charge forces. The preliminary designs and the beam dynamics studies will be presented in this contribution.

 

slides icon

Slides

 
THP071 ExB Chopper System for High Intensity Proton Beams 914
 
  • C. Wiesner, L.P. Chau, H. Dinter, M. Droba, N.S. Joshi, O. Meusel, I. Müller, U. Ratzinger
    IAP, Frankfurt am Main
 
 

High intensity beams which are increasingly needed for a variety of applications pose new challenges for beam chopping. An ExB chopper system for proton beams of up to 200 mA and repetition rates of up to 250 kHz is under development at IAP. It will be tested and installed in the low energy section of the Frankfurt Neutron Source FRANZ at beam energies of 120 keV. The chopper consists of a static magnetic dipole field and a pulsed electric field in a Wien filter-type ExB configuration. The electric field temporarily compensates the magnetic deflection thus creating a proton pulse in forward direction, while the duty cycle of the electric field is minimized in order to reduce the risk of voltage breakdowns. Downstream of the chopper a septum will be used to separate the beams ensuring dumping outside the transport line in order to avoid uncontrolled power deposition and the resultant production of secondary particles. Numeric field optimizations and beam simulations including secondary electron effects are presented. Measurements of the high voltage pulse generator based on MOSFET technology and capable of generating 12 kV at 250 kHz as well as beam deflection experiments are shown.