A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tajima, T.

Paper Title Page
THP041 An Update on the Study of High-Gradient Elliptical SRF Cavities at 805 MHz for Proton and Other Applications 851
 
  • T. Tajima, W.B. Haynes, F.L. Krawczyk, M.A. Madrid, R.J. Roybal, E.I. Simakov
    LANL, Los Alamos, New Mexico
  • W.A. Clemens, K. Macha, R. Manus, R.A. Rimmer, L. Turlington
    JLAB, Newport News, Virginia
 
 

An update on the study of 805 MHz elliptical SRF cavities that have been optimized for high gradient will be presented. An optimized cell shape, which is still appropriate for easy high pressure water rinsing, has been designed with the ratios of peak magnetic and electric fields to accelerating gradient being 3.75 mT/(MV/m) and 1.82, respectively. A total of 3 single-cell cavities have been fabricated and tested with various conditions. In addition, a 6-cell cavity design has been completed including multipacting simulations.

 
THP042 Studies on Superconducting Thin Films for SRF Applications* 854
 
  • T. Tajima, L. Civale, T. Doi, G.V. Eremeev, N.F. Haberkorn, M. Hawley, A. Matsumoto, R.K. Schulze, A.T. Zocco
    LANL, Los Alamos, New Mexico
  • V.A. Dolgashev, J. Guo, D.W. Martin, S.G. Tantawi, C. Yoneda
    SLAC, Menlo Park, California
  • B. Moeckly
    STI, Santa Barbara, California
 
 

In order to overcome the theoretical limit of ~200 mT peak surface magnetic field for niobium SRF cavities, an idea of coating multi-layer thin film superconductors separated with thin dielectric layers has been suggested. We are testing MgB2, NbN and NbC as candidates for the realization of this idea. The results of surface characterization, Auger depth profile, DC magnetization measurements with SQUID, low- and high-field measurements with a TE013-like mode copper cavity coupled with a 11.4 GHz short-pulse Klystron will be presented.