A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Smedley, J.

Paper Title Page
THP112 CW Superconducting RF Photoinjector Development for Energy Recovery Linacs 998
 
  • A. Neumann, W. Anders, M. Dirsat, A. Frahm, A. Jankowiak, T. Kamps, J. Knobloch, O. Kugeler, T. Quast, J. Rudolph, M. Schenk, M. Schuster
    HZB, Berlin
  • P. Kneisel
    JLAB, Newport News, Virginia
  • R. Nietubyc
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock
  • T. Rao, J. Smedley
    BNL, Upton, Long Island, New York
  • J.K. Sekutowicz
    DESY, Hamburg
  • I. Will
    MBI, Berlin
 
 

ERLs have the powerful potential to provide very high current beams with exceptional and tailored parameters for many applications, from next-generation light sources to electron coolers. However, the demands placed on the electron source are severe. It must operate CW, generating a current of 100 mA or more with a normalized emittance of order 1 μm rad. Beyond these requirements, issues such as dark current and long-term reliability are critical to the success of ERL facilities. As part of the BERLinPro project, Helmholtz Zentrum Berlin (HZB) is developing a CW SRF photoinjector in three stages, the first of which is currently being installed at HZB's HoBiCaT facility. It consists of an SRF-cavity with a Pb cathode and a superconducting solenoid. Subsequent development stages include the integration of a high-quantum-efficiency cathode and RF components for high-current operation. This paper discusses the HZB roadmap towards an ERL-suitable SRF photoinjector, the present status of the facility and first cavity tests.