A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Pohjonen, A.S.

Paper Title Page
MOP070 Breakdown Studies for the CLIC Accelerating Structures 217
 
  • S. Calatroni, J.W. Kovermann, M. Taborelli, H. Timko, W. Wuensch
    CERN, Geneva
  • A. Descoeudres
    EPFL, Lausanne
  • F. Djurabekova, A. Kuronen, K. Nordlund, A.S. Pohjonen
    HIP, University of Helsinki
 
 

Optimizing the design and the manufacturing of the CLIC RF accelerating structures for achieving the target value of breakdown rate at the nominal accelerating gradient of 100 MV/m requires a detailed understanding of all the steps involved in the mechanism of breakdown. These include surface modification under RF fields, electron emission and neutral evaporation in the vacuum, arc ignition and consequent surface modification due to plasma bombardment. Together with RF tests, experiments are conducted in a simple DC test set-up instrumented with electrical diagnostics and optical spectroscopy. The results are also used for validating simulations which are performed using a wide range of numerical tools (MD coupled to electrostatic codes, PIC plasma simulations) able to include all the above phenomena. Some recent results are presented in this paper.