A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Paramonov, V.V.

Paper Title Page
MOP081 The PITZ CDS Booster Cavity RF Tuning and Start of Conditioning 241
 
  • V.V. Paramonov, A. Naboka
    RAS/INR, Moscow
  • A. Donat, L. Jachmann, W. Köhler, M. Krasilnikov, J. Meissner, D. Melkumyan, M. Otevrel, B. Petrosyan, J. Schultze, F. Stephan, G. Trowitzsch, R.W. Wenndorff
    DESY Zeuthen, Zeuthen
  • K. Flöttmann
    DESY, Hamburg
  • D. Richter
    HZB, Berlin
 
 

The DESY PITZ booster cavity, based on the Cut Disk Structure (CDS), is completed in construction. The L-band normal conducting cavity is intended to operate with accelerating rate up to 12.5 MV/m and RF pulse length up to 800 mks to increase the electron bunch energy in the PITZ facility at 20 MeV. The cavity was vacuum conditioned to reduce the out-gassing rate for operation in the facility with photo cathodes. The cavity is mounted in the PITZ tunnel and RF conditioning is started. The results of RF tuning before and after cavity brazing, together with first results of conditioning, are presented.

 
TUP017 The Resonant Method of Stabilization for Plane of Deflection in the Disk Loaded Deflecting Structures 434
 
  • V.V. Paramonov, L.V. Kravchuk
    RAS/INR, Moscow
 
 

The hybrid HE11 mode in the cylindrical disk loaded deflectors is twice degenerated. To ensure operational performance and stabilize the position for the plane of deflection, the dispersion curve for modes with perpendicular field polarization must be shifted in frequency with respect to the curve for modes with operating polarization. A lot of decisions, based on the deterioration of the axial symmetry of the structure, are known for this purpose. The resonant method of stabilization is proposed. Resonant elements ' slots, coupled only with modes of perpendicular polarization, are placed in the disks. Two created branches of dispersion curve for composed slot - structure modes are generated and placed symmetrically with respect to the non perturbed dispersion curve for operating modes. In the plane stabilization it provides qualitative advantage with respect a simple frequency shift, because cancels, in the first order, the influence of modes with perpendicular field polarization on the plane of deflection. The criteria for the slots definition are presented. The example of application for the traveling wave S-band deflector is described as well.

 
TUP011 Layout of the PITZ Transverse Deflecting System for Longitudinal Phase Space and Slice Emittance Measurements 416
 
  • L.V. Kravchuk, V.V. Paramonov
    RAS/INR, Moscow
  • A. Anisimov, M.V. Lalayan, A.Yu. Smirnov, N.P. Sobenin
    MEPhI, Moscow
  • D. Churanov, E.V. Ivanov, S.V. Kutsaev, M. Urbant, A.A. Zavadtsev, D.A. Zavadtsev
    Nano, Moscow
  • A. Donat, W. Köhler, M. Krasilnikov, J. Meissner, M. Pohl, J. Schultze, F. Stephan, G. Trowitzsch, R.W. Wenndorff
    DESY Zeuthen, Zeuthen
  • C. Gerth, M. Hoffmann, M. Hüning
    DESY, Hamburg
 
 

Transverse Deflecting Systems are designated for longitudinal beam diagnostics of ultra-short electron bunches in modern FEL projects. At the European XFEL, Transverse Deflecting Systems are foreseen at three locations. A prototype of the TDS in the injector of the European XFEL will be installed at PITZ which is identical in terms of deflecting structure, low-level RF system and powerful RF hardware. This PITZ TDS has the aim to prove the required performance for all TDS subsystems as well as serve as a diagnostics tool for PITZ. Results of the test cells measurements of a S-band travelling wave structure are presented, showing very good agreement with calculated parameters. RF power supply system, including 3 MW klystron and other RF hardware, is described. Solid state 130 kV Marx modulator has been developed for the klystron feeding. 10 kV module of the modulator has been built and tested. The modulator allows for high voltage shutdown within pulse.

 
TUP060 Possibility of Thermal Instability for 4-vane RFQ Operation with High Heat Loading 545
 
  • V.V. Paramonov
    RAS/INR, Moscow
 
 

Due to dispersion properties 4-vane RFQ cavity without resonant coupling is a thermally unstable structure. With deterioration of balance for local detuning there is a possibility for runaway in the field distribution and related thermal effects. It can results, in principle, in irreversible plastic deformations and cavity frequency shift. Both the increment and the threshold of instability are proportional to the average dissipated RF power. This possibility is more probable for long RFQ cavities. Also particularities for the cavity ends design are important. Some general features of this effect are discussed qualitatively and illustrated with simulations.