A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Otevrel, M.

Paper Title Page
MOP081 The PITZ CDS Booster Cavity RF Tuning and Start of Conditioning 241
 
  • V.V. Paramonov, A. Naboka
    RAS/INR, Moscow
  • A. Donat, L. Jachmann, W. Köhler, M. Krasilnikov, J. Meissner, D. Melkumyan, M. Otevrel, B. Petrosyan, J. Schultze, F. Stephan, G. Trowitzsch, R.W. Wenndorff
    DESY Zeuthen, Zeuthen
  • K. Flöttmann
    DESY, Hamburg
  • D. Richter
    HZB, Berlin
 
 

The DESY PITZ booster cavity, based on the Cut Disk Structure (CDS), is completed in construction. The L-band normal conducting cavity is intended to operate with accelerating rate up to 12.5 MV/m and RF pulse length up to 800 mks to increase the electron bunch energy in the PITZ facility at 20 MeV. The cavity was vacuum conditioned to reduce the out-gassing rate for operation in the facility with photo cathodes. The cavity is mounted in the PITZ tunnel and RF conditioning is started. The results of RF tuning before and after cavity brazing, together with first results of conditioning, are presented.

 
TUP096 First Results of Slice Emittance Diagnostics with an Energy Chirped Beam at PITZ 635
 
  • Ye. Ivanisenko, G. Asova, H.-J. Grabosch, M. Krasilnikov, M. Mahgoub, M. Otevrel, S. Rimjaem, F. Stephan
    DESY Zeuthen, Zeuthen
  • M.A. Khojoyan
    YerPhI, Yerevan
  • G. Vashchenko
    NSC/KIPT, Kharkov
 
 

Recent successes in existing linac based FEL facilities operation and improvements in future FEL designs became possible due to detailed research in high-brightness electron beam production. The Photo Injector Test facility in Zeuthen (PITZ) is the DESY center for electron source characterization and optimization. New slice emittance diagnostics was recently commissioned at PITZ. In the measurement approach a bunch is accelerated off-crest in the accelerating cavity downstream the gun, a part of the bunch is selected after a dipole with a slit perpendicular to the dispersive direction, and the transverse emittance of the bunch part is measured using a quadrupole or a slit scan. Test measurement results are presented for 1 nC charge, flat-top and Gaussian longitudinal laser shapes.