Paper | Title | Page |
---|---|---|
MOP011 | Injector Linac Upgrade for SuperKEKB | 70 |
|
||
The KEKB-factory will be upgraded for 40 times higher lumnosity (SuperKEKB). The injector linac is required to increase the beam intensities (e-:1nC -> 5nC, e-:1nC -> 4nC) and reduce the emittances (e-:300 -> 20 um, e+: 2100 -> 10 um ) for the SuperKEKB. A photo-cathode RF gun will be introduced to generate the high-intensity and low-emittance electron beams. A positron damping ring will be constructed to reduce the emittance. A new matching device (a flux concentrator or a superconducing magnet) and an L-band capture section will be introduced to increase the positron intensity. Beam line layout down to the damping ring will be rearranged to have sufficient beam acceptance considering the positron emitttance. This paper describes details of the upgrade scheme of the injector linac. |
||
MOP012 | Development of L-Band Positron Capture Accelerator System in KEKB Injector Linac | 73 |
|
||
In order to improve the positron beam intensity needed for super KEKB project, it was decided to replace the present S-band structures in the positron capture section by a new L-band (1298MHz) accelerator system. A 2m long TW structure of 12MV/m gradient is now under idesign process while a 40MW klystron will be delivered in summer. After the klystron testing, a single L-band accelerator unit will be constructed for the structure study. The study is scheduled in next spring to operate the structure under solenoidal magnetic focussing field. |
||
MOP111 | High Brightness Electron Beam Focusing System for an X-ray Generator | 322 |
|
||
A new type of rotating anticathode X-ray generator has been developed, in which the electron beam up to 120keV irradiates the inner surface of a U-shaped Cu anticathode. A high-flux electron beam is obtained by optimizing the geometry of the combined function bending magnet. In order to minimize the sizes of the X-ray source, the electron beam is focused in a short distance by the combined function bending magnet, of which geometrical shape was determined by simulation with the codes of Opera-3D, General Particle Tracer (GPT) and CST STUDIO. The result of simulation clearly shows that the role of combined function in the bending magnet and the steering magnet is important to focus the beam in small sizes. FWHM sizes of the beam were predicted by simulation to be 0.45mm (horizontal) and 0.05mm (vertical) for a beam of 120keV and 75mA of which effective brilliance is about 500kW/mm2 with the supposition of a two-dimensional Gaussian distribution. The beam focus sizes on the target will be verified in the experiments by using the high-voltage power supply for the X-ray generator improved from 60kV to 120kV and 75mA. |