A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Montesinos, E.

Paper Title Page
THP055 Multipactor Simulations of the SPL Power Coupler 878
 
  • G. Burt, P.K. Ambattu, A.C. Dexter
    Cockcroft Institute, Lancaster University, Lancaster
  • R. Calaga
    BNL, Upton, Long Island, New York
  • E. Montesinos
    CERN, Geneva
 
 

Multipactor is a limiting factor in many RF power couplers. The SPL coupler is proposed to have a conical matching section between the window and the coaxial section however this section must be checked for multipactor. Multipactor simulations of the coupler up to a few MW's of power were performed using a variety of different codes and the results were compared. Simulations were performed in the conical and straight coaxial sections.

 
THP004 Layout and Machine Optimisation for the SPL at CERN 761
 
  • F. Gerigk, S. Atieh, S. Calatroni, O. Capatina, E. Ciapala, M. Eshraqi, L.M.A. Ferreira, R. Garoby, M. Hernandez Flano, W. Höfle, E. Lebbos, A.M. Lombardi, E. Montesinos, Th. Otto, V. Parma, P.A. Posocco, T. Renaglia, M. Schuh, V. Vlachoudis, W. Weingarten, S. Weisz
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
 
 

During the past 2 years the Superconducting Proton Linac (SPL) study has grown into an international collaboration with the goal of optimising the architecture of a pulsed superconducting (SC) high-power proton linac. This effort includes the study and prototyping of major technical components, such as SC high-gradient cavities, power couplers, the RF distribution system, HOM couplers, cryo-modules, focusing elements, etc. Even though the effort is driven by CERN specific needs, the established design principles are valid for a range of superconducting linac projects. In this paper we report on the latests decisions concerning the machine architecture and on the ongoing R&D effort for technical components.