Paper | Title | Page |
---|---|---|
MOP108 | Planned Machine Protection System for the Facility for Rare Isotope Beams at Michigan State University | 313 |
|
||
The Facility for Rare Isotope Beams (FRIB) at Michigan State University will utilize a 400 kW, heavy-ion linear accelerator to produce rare isotopes in support of a rich program of fundamental research. In the event of operating failures, it is extremely important to shut off the beam in a prompt manner to control the beam losses that may damage the accelerator components such as superconducting cavities. FRIB has adapted the residual beam loss activation limit at 30 cm to be equivalent to 1W/m of operating beam losses. We are designing FRIB MPS to be flexible but redundant in safety to accommodate both commissioning and operations. It is also dependent upon the operational mode of the accelerator and the beam dump in use. The operational mode is distributed via a finite state machine to all critical devices that have multiple hardware checkpoints and comparators. It is important to note that FRIB is a cw machine and MPS status is continuously being monitored by 'device mode change' and real time data link. In this paper, we present FRIB Machine Protection architecture, plans and implementation. |
||
TUP093 | Planned Diagnostics for the Facility for Rare Isotope Beams at Michigan State University | 626 |
|
||
The Facility for Rare Isotope Beams (FRIB) at Michigan State University will utilize a high power, heavy-ion linear accelerator to produce rare isotopes in support of a rich program of fundamental research. The linac will consist of a room temperature-based front-end system producing beams of approximately 0.3 MeV/u. Three additional superconducting linac segments will produce beams of >200 MeV/u with a beam power of up to 400 kW. Because of the heavy-ion beam intensities, the required diagnostics will be largely based on non-interceptive approaches. The diagnostics suites that will support commissioning and operation are divided into lower energy <0.3 MeV/u front-end and higher energy driver linac systems (<200 MeV/u for uranium). The instruments in the driver linac include strip-line BPM, toroid, BCM, and 3-D electron scanners to measure rms beam size. A desired availability of >90% and an aggressive commissioning schedule lead to some challenges in beam diagnostics requirements that will be addressed in this paper. We are committed to using an architecture common with the rest of FRIB for the data acquisition and timing which will also be discussed in this paper. |