Paper | Title | Page |
---|---|---|
TUP059 | Full 3D Modeling of a Radio-Frequency Quadrupole* | 542 |
|
||
An integral part of the ongoing ATLAS efficiency and intensity upgrade is an RFQ to replace the first section of the existing injector. The proposed RFQ is 3.8 m long made of 106 cells with 30 keV/u input energy and 260 keV/u output energy. The RFQ was designed using the DesRFQ code which produces a file consisting of the length, modulation and the 8 coefficients of the 8-term potential for every cell. To independently check the design we created full 3D models of the RFQ including cell modulation in both Micro-Wave Studio (MWS) and Electro-Magnetic Studio (EMS). The MWS model was used to verify the phasing and energy gain along the RFQ using particle tracking and the EMS model was used to extract the electric field cell by cell assuming the electrostatic approximation. A very good agreement was obtained between the full 3D model and the 8-term potential description in TRACK. In addition to the standard sinusoidal vane profile we studied the option of converting the cells with maximum modulation (~ 40 cells) into trapezoidal cells. The output energy was increased from 260 keV/u to ~ 300 keV/u with minimal change to beam dynamics. This option is the final RFQ design. |
||
MOP040 | Advanced Unilac Upgrade for Fair | 142 |
|
||
To provide for the high beam currents as required of the FAIR project, the GSI Unilac High Current Injector (HSI) must deliver 18 mA of U4+ ions at the end of the prestripper section. With the design existing up to 2008, the RFQ could not reach the necessary beam currents at the RFQ output, as simulations had shown. Furthermore, parts of the existing LEBT must be modified, and a new straight source branch must be added to provide for the full required beam current. As a first step of an HSI frontend upgrade, the RFQ has been modernized in summer 2009 with a completely new electrode design. Commissioning of the HSI has shown that the transmission of the RFQ increased significantly (from 55% to 85% in high current Uranium operation, 95% in medium current operation). As expected, further bottlenecks for the transmission of the complete HSI (matching LEBT-to-RFQ, matching to the Superlens) have been detected. An upgrade of LEBT magnets is foreseen for 2010, the additional linear source branch will follow. |