Paper | Title | Page |
---|---|---|
TUP020 | Accelerator Reference Design for the MYRRHA European ADS Demonstrator | 440 |
|
||
The goal of the MYRRHA project is to demonstrate the technical feasibility of transmutation in an Accelerator Driven System (ADS) by building a new flexible irradiation complex in Mol (Belgium). The MYRRHA facility requires a 600 MeV accelerator delivering a maximum proton flux of 4 mA CW operation. Such a machine belongs to the category of the high-power proton accelerators, with an additional requirement for exceptional reliability: because of the induced thermal stress to the subcritical core, the number of unwanted beam interruptions should be minimized down to the level of about 10 per 3-month operation cycle, a specification that is far above usual proton accelerators performance. This paper describes the reference solution adopted for such a machine, based on a so-called 'fault-tolerant' linear superconducting accelerator, and presents the status of the associated R&D. |
||
TUP023 | CH-Cavity Development for the 17 MeV EUROTRANS Injector | 446 |
|
||
Recent international cw operated high-current applications with ambitious requirements regarding beam power and quality ask for new linear accelerator developments. In this context the CH-structure (Crossbar-H-mode) has been developed at the Institute for Applied Physics (IAP) of Frankfurt University. It is a multi-cell drift tube cavity for the low and medium energy range operated in the H21-mode and can be used for superconducting as well as for room temperature applications. Because of the large energy gain per cavity, which leads to high real estate gradients, the CH-cavity is an excellent candidate for the efficient acceleration in high power proton and ion accelerators with fixed velocity profiles. One possible application for this kind of cavity is the EUROpean research programme for the TRANSmutation (EUROTRANS) of high level nuclear waste in an accelerator driven system (ADS), which requires an efficient high-current cw-linac (600 MeV, 4 mA, protons, 352 MHz). The paper describes the status of the CH-cavity development and the actual beam dynamics results for the reference design of the 17 MeV EUROTRANS injector. |