A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Khabiboulline, T.N.

Paper Title Page
MOP099 Status of the Design of 650 MHz Elliptical Cavities for Project X 289
 
  • S. Barbanotti, M.H. Foley, I.G. Gonin, J. Grimm, T.N. Khabiboulline, L. Ristori, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia
 
 

Project X is a proposed high-intensity proton accelerator complex that could provide beam to create a high-intensity neutrino beam, feed protons to kaon- and muon-based precision experiments, and for other applications still under investigation. The present configuration of the proton accelerator foresees a section with 650 MHz beta = 0.6 and beta = 0.9 elliptical cavities. Prototypes of single-cell 650 MHz cavities and five-cell beta = 0.9 650 MHz cavities are being designed and fabricated at Fermilab in the R&D process for Project X. This paper summarizes the design status of the beta = 0.6 and beta = 0.9 single-cell prototype cavities, and also addresses the design effort focused on the five-cell beta = 0.9 cavities.

 
TUP048 Experiences with the Fermilab HINS 325 MHz RFQ 515
 
  • R.C. Webber, T.N. Khabiboulline, R.L. Madrak, G.V. Romanov, V.E. Scarpine, J. Steimel, D. Wildman
    Fermilab, Batavia
 
 

The Fermilab High Intensity Neutrino Source program has built and commissioned a pulsed 325 MHz RFQ. The RFQ has successfully accelerated a proton beam at the design RF power. Experiences encountered during RFQ conditioning, including the symptoms and cause of a run-away detuning problem, and the first beam results are reported.

 
TUP079 SS Helium Vessel Development for 1.3 GHz SRF Cavities at Fermilab 596
 
  • N. Dhanaraj, S. Barbanotti, J.S. Brandt, H. Carter, M.H. Foley, J. Grimm, T.N. Khabiboulline, R. Wands
    Fermilab, Batavia
 
 

Fermilab is currently focusing its efforts toward the development of Stainless Steel (SS) helium vessels for its 1.3 GHz SRF cavities. The objective is to transition towards the concept of using SS helium vessels to dress the bare SRF cavities, thereby paving way for significant cost reduction and efficient production techniques for future accelerators. The biggest challenge has been to design a reliable interface between the niobium cavity end group and the stainless steel end flange that encloses the helium vessel. Fermilab has been pursuing a brazed joint design to allow this transition. Additional design challenges associated with this transition are ensuring proper cooling of the cavity, compensating for the difference in thermal contraction between the SS helium vessel and niobium cavities, and also modification of the tuning procedure and ensuring the safety and reliability of the blade and piezo tuners. Current efforts on the qualification of the niobium-SS braze joint, finite element simulations of the thermal design aspects, bench testing of actual cavity displacements, and study of the effects on the tuners will be presented.

 
THP008 Cw RF System of the Project-x Accelerator Front End 773
 
  • T.N. Khabiboulline, S. Barbanotti, I.G. Gonin, N. Solyak, I. Terechkine, V.P. Yakovlev
    Fermilab, Batavia
 
 

Front end of a CW linac of the Project X contains a H- source, an RFQ, a medium energy transport line with the beam chopper, and a SC low-beta linac that accelerates H- from 2.5 MeV to 160 MeV. SC Single ' spoke Resonators (SSR) will be used in the linac, because Fermilab already successfully developed and tested a SSR for beta 0.21. Two manufactured cavities achieve 2-3 times more than design accelerating gradients. One of these cavities completely dressed, e.g. welded to helium vessel with integrated slow and fast tuners, and tested in CW and pulse regimes. Successful tests of beta=0.21 SSR give us a confidence to use this type of cavity for low beta (0.117) and for high- beta (0.4) as well. Both types of these cavities are under development. In present report the basic constrains, parameters, electromagnetic and mechanical design for all the three SSR cavities, and first test results of beta=0.21 SSR are presented.

 
THP031 First High Gradient Test Results of a Dressed 325 MHz Superconducting Single Spoke Resonator at Fermilab 821
 
  • R.C. Webber, T.N. Khabiboulline, R.L. Madrak, T.H. Nicol, L. Ristori, W.M. Soyars, R.L. Wagner
    Fermilab, Batavia
 
 

A new superconducting RF cavity test facility has been commissioned at Fermilab in conjunction with first tests of a 325 MHz, β = 0.22 superconducting single-spoke cavity dressed with a helium jacket and prototype tuner. The facility is described and results of full gradient, CW cavity tests with a high Qext drive coupler are reported. Sensitivities to Q disease and externally applied magnetic fields were investigated. Results are compared to bare cavity results obtained prior to hydrogen degassing and welding into the helium jacket.