Paper | Title | Page |
---|---|---|
TUP045 | RF and Heat Flow Simulations of the SARAF RFQ 1.5 MeV/nucleon Proton/Deuteron Accelerator | 506 |
|
||
The SARAF 4-rod RFQ is operating at 176 MHz, designed to bunch and accelerate a 4 mA CW deuteron/proton beam to 1.5 MeV/u. The electrodes voltage for accelerating deuterons is 65 kV, a field of 22 MV/m. The RFQ injected power is induced by a loop coupler. The power needed to achieve this voltage is 250 kW, distributed along the 3.8 m RFQ length. This power density is approximately 3 times larger than that achieved in other 4-rod RFQs. At high power, local high surface currents in the RFQ might cause overheating which will lead to out-gassing and in turn to sparking. We used CST MWS to simulate the RF currents and fields in a 3D detailed model of the SARAF RFQ. The correct eigenmode was reproduced and both Qe and Qo are consistent with the measured values. The heat load generated by the simulated surface currents at critical areas along the RFQ was the input for thermal analysis using Ansys. Detailed results reproduced the experimental observation of several overheated regions in the RFQ, including the end flanges and the plungers. Further results predicted overheating at different regions which were subsequently measured and are now being improved by additional cooling. |