Paper | Title | Page |
---|---|---|
TUP004 | Status of ERL and cERL Projects in Japan | 398 |
|
||
Future light sources based on the Energy Recovery Linac (ERL) are expected to bring innovation to the synchrotron radiation (SR) science. Our Japanese collaboration team plans to construct a 5-GeV ERL which can produce super-brilliant and ultra-short pulses of SR as well as can be a driver for a proposed X-ray free-electron laser oscillator (X-FELO). In order to establish the key technologies for the ERL, we are conducting aggressive R&D efforts. Concerning our high-brightness photocathode DC electron gun, we succeeded to apply a DC high voltage of 500 kV through a support rod. Both cryomodules for the injector and the main-linac are also under development. In order to demonstrate reliable operations of such key technologies, we plan to construct the Compact ERL (cERL) at KEK. During FY2009, we prepared the infrastructure for the cERL which includes renovation of the building (the East Counter Hall), renovation of cooling-water system and electrical substation, installation of liquid helium refrigerator, and installation of a part of the rf source. In this paper, we present up-to-date status of the ERL and the Compact ERL projects in Japan. |
||
THP111 | Development of a 500-kV Photo-Cathode DC Gun for ERL Light Sources | 995 |
|
||
An electron gun capable of delivering high current and high brightness electron beam is indispensable for next generation energy recovery linac light sources. A high voltage photocathode DC gun is a promising gun for such new light sources. It is however difficult to apply DC high voltage on a ceramic insulator with a rod supporting cathode electrode because of field emission from the rod. In order to mitigate the problem, we have employed a segmented insulator with rings which guard the ceramics from the field emission and recently succeeded in applying 500-kV on the ceramics for eight hours without any discharge. This high voltage testing was performed with a simple configuration without NEG pumps and electrodes. The next step is to repeat the same high voltage testing with a full configuration necessary for beam generation. We have designed electrodes for the maximum surface electric field not to exceed 11 MV/m at 500 kV while keeping the distance between the electrodes 100 mm. NEG pumps with a pumping speed of 7200 L/s have been installed in the gun chamber. A photocathode preparation system was connected to the gun chamber and beam generation is planned this summer. |