A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ferreira, L.M.A.

Paper Title Page
THP004 Layout and Machine Optimisation for the SPL at CERN 761
 
  • F. Gerigk, S. Atieh, S. Calatroni, O. Capatina, E. Ciapala, M. Eshraqi, L.M.A. Ferreira, R. Garoby, M. Hernandez Flano, W. Höfle, E. Lebbos, A.M. Lombardi, E. Montesinos, Th. Otto, V. Parma, P.A. Posocco, T. Renaglia, M. Schuh, V. Vlachoudis, W. Weingarten, S. Weisz
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
 
 

During the past 2 years the Superconducting Proton Linac (SPL) study has grown into an international collaboration with the goal of optimising the architecture of a pulsed superconducting (SC) high-power proton linac. This effort includes the study and prototyping of major technical components, such as SC high-gradient cavities, power couplers, the RF distribution system, HOM couplers, cryo-modules, focusing elements, etc. Even though the effort is driven by CERN specific needs, the established design principles are valid for a range of superconducting linac projects. In this paper we report on the latests decisions concerning the machine architecture and on the ongoing R&D effort for technical components.

 
THP032 Status of the EP Simulations and Facilities for the SPL 824
 
  • S. Calatroni, L.M.A. Ferreira, M. Leitao Macatrao, A. S. Skala, M. Sosin, Y.L. Withofs
    CERN, Geneva
  • R. De Waele
    KHLim, Diepenbeek
 
 

CERN is assembling a new vertical electropolishing facility in order to process several niobium cavities of beta 1 and beta 0.65 in the context of the HP-SPL R&D programme. Electrochemical simulations are being used in order to define the optimal cathode geometry to process the cavities in a vertical position. Macroscopic properties of fluid dynamics like the Reynolds number and thermodynamics linked to the power dissipated in the process are taken into account to dimension the main system components. All the materials from the different equipments must be compatible with all chemicals within the required working temperature and pressure. To provide safe operating conditions when handling chemicals or processing cavities, specific safety and protection equipment is also foreseen.

 
THP033 Superconducting Sputtered Nb/Cu QWR for the HIE-ISOLDE Project at CERN 827
 
  • S. Calatroni, P. Costa Pinto, A. D'Elia, L.M.A. Ferreira, G. Lanza, M. Pasini, M. Scheubel, M. Therasse
    CERN, Geneva
  • R.E. Laxdal, V. Zvyagintsev
    TRIUMF, Vancouver
 
 

For the foreseen intensity and energy upgrade of the ISOLDE complex at CERN (HIE-ISOLDE project) a new superconducting LINAC based on sputtered Nb/Cu Quarter Wave Resonators (QWRs) of two different beta families will be installed in the next three to five years. A prototype cavity of the higher beta family is currently being developed. In this paper we will discuss the latest developments on the sputtering technique for this kind of cavity geometry. First cold RF measurements will be reported.